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I. INTRODUCTION.

Wide-angle celestial structures, such as bright comet tails and nearby

galaxies and clusters of galaxies, rely on photographic methods for quantified

morphology and photometry, primarily because electronic devices with comparable

resolution and sky coverage are beyond current technological capability. CCDs with

pixel numbers measured in the millions have become commonplace, but fall by orders

of magnitude in providing sky coverage for large structures with good resolution.

Even computers are daunted by the task of processing bits of informatlon numbered in

the thousands of millions. The photographic process succeeds for all its obdurate

properties, and a picture speaks a thousand megawords.

Nevertheless, seeing is not quite believing, because photographic density is

not simply related to luminous intensity. Morphology is clearly dependent on

photometry, particularly in non-linear parts of the response, and astrophyslcally

important numbers are dependent on both. _4hile stars of known magnitude can be used

to calibrate images of other stars, their use in determining the surface brightness-

es of extended images is not straightforward.

Brandt (1985) has emphasized that stars of known magnitude are natural

calibrators that should lead to accurate calibration of photographic plates if a

suitable theory is forthcoming, because in principle all the necessary information

resides in the exposed emulsion. Rather than being an unavoidable hindrance to

isophot0metry, star images would play a pivotal role in calibration. While spot

sensitometry is the canonical means of plate calibration, it is not always available

on plates of interest, and suffers from its own intrinsic calibration problems.

The present work is an examination, more-or-less from first principles, of

the problem of the photometry of extended structures and of how this problem may be

overcome through calibration by photometric standard stars. Previous work is

summarized in _II. In Till the perfect properties of the ideal fleld-of-view are
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stated in the guise of a radlometrlc paraxlal approximation, in the fond hope that

fields-of-view of actual telescopes will conform. Fundamental radlometric concepts

are worked through In_YfV before the issue of atmospheric attenuation is addressed

in _. The independence of observed atmospheric extinction and surface brightness

leads off the quest for formal solutions to the problem of surface photometry in

_VI.

Methods and problems of solution are discussed in _VII. The development

relies on the powerful method developed by Zou, Chen, and Pete@son (1981), but puts

it on a radiometrically sound footing by solving the problem of the radiometric

zero-point, and by ensuring through conservation of energy that atmospheric extinc-

tion and the radiometrlcally related sky brightness are actually part of the

solution. Standard star image profiles need not conform to any theoretical ideal,

but images must not be too distorted (see §7.6); on all counts, the present

formalism is comparatively assumption-free. In its final form, all quantities that

appear are dimensionless as they should be.

Liller (1985) has raised the spectre of reciprocity failure (RF), and _VII

does not shrink from it. Rather, the spectre is confronted in the spirit of

standard stars and shown to be chimerical in that light, provided certain rituals

are adopted. RF (and a good deal else besides) can be exorcised in future studies

of comets provlded that standard stars are inserted Just as sensitometry spots are

inserted.

After a brief discussion in _[VIII of Baker-Sampson polynomials and the

vexing issue of saturation, _IX embarks on a pursuit of actual numbers to be

expected in real cases. While the numbers crunched are gathered e__xxnihilo, they

demonstrate the feaslbilty of Newton's method in the solution of this overdetermln-

ed, nonlinear, least square, multiparametrlc, photometric problem. This is no small

feat_ and should encourage future research.
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_X concludes the Report with a summary of Reports I and II (Dorband et al.

1985; Dorband and Usher 1985); the definition of the search area for photometric

standards in the P/Halley path, and their incidence and usefulness in future

photometric reduction, is described.

Errors of one sort or another are bound to exist in spite of my best

intentions, and I apologize for them in advance; I would appreciate your communicat-

ing them to me.
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II. OTHER METHODS.

The first step in the process of converting density to surface brightness is

the digitization of the image (see e.g. Klinglesmith 1983). Spot size should be

larger than the scattering radius and grain separation, but large enough to reduce

the noise of the output. Stock and Williams (1962) review 3 methods of data

acquisition: (1) schrafflerkassette, (il) Fabry photometry, and (Ill) extrafocal

images, and they discuss the advantages and shortcomings of each. In (1), a moving

image introduces the Intermittency Effect (combined with RF too if images are both

point and extended). In (ii), the image size of point and extended images is the

same, but complex lens systems are needed. In (ill), extrafocal images destroy

morphological information, but Stock and Williams make an interesting point:

extrafocal images are useful calibration tools when imposed in a separate exposure

of the same length on a portion of the plate different from an extended object of

interest. This concept of separate standard star sequences is a precursor to our

solution to the problem of RF for trailed standards on comet plates (§7.6), except

that, in light of recent advances (e.g. ZCP, Kllnglesmith and Rupp 1984; Warnock and

Kllnglesmlth 1984, and this Report), there is no need for the images to be out of

focus! Moreover, there is the added bonus that atmospheric extinction can be found

as part of the solution (§6.3 et seq.).

Stock and Williams (1962) also discuss sensitometric spot and wedge calibra-

tion. This is far and away the most common method nowadays, but it has drawbacks

(see Agnelll et al. 1979); the object and the calibrators are not simultaneously

exposed, and ambient conditions are oftentimes different; also, the characteristic

curve may differ from one part of the plate to another. In our proposed method,

ambient conditions will be different only if outside conditions are different, and

these are amenable to experimental control and are capable of being monitored. As

for not having the H&D (or characteristic curve) the same from one part of the plate
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to another, multiple exposures are necessary and desirable in any case. In fact,

standard stars can be used to calibrate the wedges.

The methods of Kormendy (1973), Agnelll et al. (1979), and Feltzlnger et al.

(1983) depend on assumptions regarding the profiles of field stars. Image symmetry

is desirable and assumed to be independent of apparent magnitude. Kormendy (1973)

determines the magnitude zero-point by simultaneous photoelectric photometry of the

sky. The methods are limited by their assumptions and complexity, and exiguous in

their lack of simultaneous solutions for sky brightness and extinction. Owing to

the crucial role played by the sky brightness in Type II detections and thus in the

definition of morphological structure (e.g. Sandage 1972), it is essential that the

faint end of the H&D curve be well defined, but Feitzinger et al. (1983) show that

this is not easily accomplished.

Zou, Chen, & Peterson (1981) [herein ZCP] give a method for star profiles of

arbitrary shape, and so allow somewhat for a less-than-perfect world. In the

exemplification of their method, the zero-point of the calibration (which is de

facto the background sky brightness) is assumed, and there is no allowance for

atmospheric extinction. The methods of ZCP and Agnelli et al. (1979) have been

implemented by Klinglesmlth & Rupp (1984) and Warnock & Klinglesmlth (1984), though

the problem of the photometric zero-point, extinction, and sky brightness, remain.

The great promise shown by the moment-sum method of ZCP has suggested to the

Steering Committee of the IH-W LSPN that its applicability to P/Halley, and future

comet apparitions, be examined.
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III. THE RADIOMETRIC PARAXIAL APPROXIMATION.

Wide-fleld imagery is accomplished normally with telescopes of the classic

Schmldt design. Such cameras are stopped at the center of curvature of a concave

spherical mirror, and so produce images that are free of coma and astigmatism. But

they are afflicted with spherical aberration, and this is reduced to fifth order by

an aspherlc corrector situated at the camera stop. Thus each image lles on an

optical axis that passes through the camera stop, and on a spherical focal surface

whose center is at the center of curvature of the primary mirror. The basic

principle of the Schmldt system therefore is that the telescope has no preferred

optical axis, and so yields excellent images to high order in all field directions

(Bowen 1960).

Distance-to-center effects will arise however because the corrector has a

preferred axis. Images far from the axis of optical symmetry will suffer losses in

irradiance owing to vignetting. There is also a deteriorlation of image quality

owing to residual aberrations; for oblique incidence, the residual fifth-order

spherical aberration sets the limit on the fleld-of-view for good images, and coma

and astigmatism also develop owing to the relative tilt of the corrector.

In general, the Radlometric Paraxial Approximation (the RPA) is valid for

those directions sufficiently close to the axis of optical symmetry that losses in

irradiance are negligible. For example, the unvignettlng field of the 48-inch

Palomar Schmldt camera is about 5.4 degrees; even at the corners of the 14-inch

square photographic plates, the loss of irradlance is estimated to be less than 0.2

mag. (Minkowski and Abell 1963).

In the RPA, aberrations affect surface photometry only through a loss of

morphological discrimination, since radiometric theory accounts for all the energy.

The photometry of point sources is similarly unaffected. A radiometrlc calibration

of the entire FOV of the telescope can be accomplished by standard stars sufficient-
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ly close to the direction of interest. An accurate morphologlcal-photometric

description of structures larger than the field either of negligible aberrations or

negligible vlgnetting may in theory be achieved with the help of the spatial

response of the camera to point sources, but this is beyond the scope of the present

treatment. In addition, chromatic aberration is a fundamental limitation to the

morphological discrimination of any camera with a refracting element, and is present

even in the RPA.
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IV. RADIOMETRY

§4.1 PIXEL RADIANCE

Let L(X) be the Spectral Radiance of a source at infinity incident upon

a telescope of nominal aperture diameter D, focal length f, and effective

collecting area A = %_GD 2. The function G accounts for geometrical effects such
e

as vignetting and shadowing of the primary.

A pixel area _ = f2_ in the focal plane subtends a solid angle _ of the

sky. The radiance L(X) suffers losses owing to the transmittances Tt(X) and

Tf(X) of the telescope and filter respectively. If the detector has a quantum

efficiency Rd(X) , then the System Response is:

(4.1.1) S(X) = Tt(X).Tf(X).Rd(X) •

The detected spectral radiance is:

(4.1.2) F(X) = L(X) S(X),

and the detected Spectral lllumination is:

(4.1.3) I(X) = f F(X) d_.

The heterochromatic Illumination is found by integration over the bandpass of

the system response; this bandpass is symbolically represented by B- Thus:

(4.1.4) l(B) " f I(X) dX - f f F(X) dX d_ .
B Bn

The heterochromatic Power detected is:

(4.1.5)

assuming A
e

P(8) " A l(B) = A f f F(X) dX dw,
e e

Bn

to be independent of X and _. The total Energy detected over

integration time T is:

(4.1.6) Q(8) = A e f l(B) dt - A e f f f F(X) dt dX d_
T TS_
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Each integration in Equation (4.1.6) entails loss of information; in

self-explanatory notation, appropriate meanquantities are:

(4.1.7) <H>X = f H(x)dx / f dx
X X

where H is some function and x might be solid angle, time, or wavelength. Thus

increased temporal, spatial, and spectral resolution, will result from

decreased integration time, pixel size, and bandpass.

The heterochromatlc brightness in magnitudes of solid angle _ is:

(4.1.8) m(S) = m(°)(8) - 2.5 log 1(8),

where m(°)(8) is the magnitude zero-polnt appropriate to bandpass 8. Mono- and

heterochromatlc quantities are:

Spectral Radiances L(%),F(%)

Spectral Illumination I(_)

Illumination 1(8)

Power P(8)

Energy Q(8)

Brightness m(8)

erg/cm2/sec/ster/A,

erg/cm2/sec/A;

erg/cm2/sec,

erg/sec,

erg.

mag.
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§4.2 HETEROCHROMATICSYSTEMPARAMETERS

Broadbandfilters deliver heterochromatlc measures of the radiant

intensity. Thus it is necessary to characterize the incident spectral radiance

L(%) and system response S(%) with the help of suitably defined heterochromatlc

parameters. These maybe divided into three categories:

Case (1): The "System ResponseSolution" gives approximate brlghtnesses at a

precise wavelength % :
O

is the Mean Wavelength, precisely defined solely by the System Response
O

S(%). Thus in this case, a precise knowledge of the characteristic wavelength

is offset by uncertainty in brightness.
o

Case (ll): The "Isophotal Solution" gives precise isophotes at an approximate

wavelength %1:

%1 is the Isophotal Wavelength, defined by the condition that energy be

precisely conserved. Thus isophotes are precise, despite uncertainty in the

wavelength at which energy is conserved.

Case (Ill): The "Effective Wavelength Solution" gives approximate brlghtnesses

at an approximate wavelength _ :
e

is a weighted mean as in case (1), except that in this case the weighting
e

function is the entire radiant throughput S(%)L(%).

Unlike % both % and _ make concessions to the incident spectral
O' i e

radiance. In all cases, uncertainties are necessitated by the broadband nature

of the problem. In addition, heterochromatlc measures may be weighted either

by photon energy (§4.3) or pulse counts (§4.4).
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§4.3 ENERGYINTEGRATION

Following equation (4.1.4), let the function:

(4.3.1) F(1) = S(1)L(1)

be a measure of the spectral radiance delivered by the detector. Since L(I)

has units of energy, equation (4.3.1) is the appropriate function for energy-

sensitive devices when integrated over wavelength. The heterochromatic rad-

iance F is thus:

(4.3.2) F ffif F(1)dl - f S(1)e(1)dl .

S(1) is determinable in the laboratory. F is measurable, being the observed

radiance weighted by the system response. The functions L(1) and F(1) are

generally unknowable through broadband photometry, but it is still possible to

gain some knowledge of them by approximate means.

Since L(1) is unknown, it may be approximated by a Taylor expansion

about some flducial wavelength %:

(4.3.3) L(_) = L(_) + L'(X) (l-X) + L"(X) (_-X)'/2! + ...

where it is assumed that the spectral gradients L', L"_ ..., are well-behaved.

The fiducial wavelength X in equation (4.3.3) is free to be chosen so as to

facilitate the solution.

One way of generating Cases (i-lii) Is as follows:

(i): The more terms retained in equation (4.3.3), the more accurate the

representaion of L(1); but L(I) and its gradients are generally unknown.

Nevertheless, the disposable parameter _ can be chosen to ensure that at least

one term of equation (4.3.3) be precisely accounted for; clearly this term

should be the one that nullifies the greatest source of uncertainty in the

series expansion. Thus if the contribution of the second term in equation
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(4.3.3) were to be nullified by a suitable definition of X, then L(I) will be

accurate automatically to 2nd order. The resulting characteristic wavelength

will be an average value of _ weighted by the System ResponseFunction.o o

is the MeanWavelength.

(ii): By the MeanValue Theorem, somewavelength li exists such that:

(4.3.4) F - L(%i) f S(1) dl

precisely. In this case, only the first term in equation (4.3.3) is retained,

but the wavelength X _li must be sought by approximation through the series

expansion, li is the Isophotal Wavelength.

(iii): Alternatively, X might be sought by the condition that the Effective

Wavelength k be a weighted meanthat accounts for both the incident spectrale

radiance and the losses of the optical path.

These parameters are derived next.

Case (i).

It follows from equations (4.3.2) and (4.3.3) that:

(4.3.5) F ffi L(X) f S(k)d% + L'(_) f S(_)(%-%)d%

+ _L"(X) f S(%)(%-%) 2 +...

Since knowledge of L', L", ... is generally imprecise or lacking, L(_) will be

most accuratly determined through the measured quantity F if we specify

through the condition:

(4.3.6)

The quantity
o

(4.3.7)

Since
o

middle of the range of transmitted radiances.

f S(%)(%-_)d% - O.

so specified is the Mean Wavelength:

o

is weighted by the Response Function, it lies somewhere in the

If S(_) is symmetric in %, then
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coincides with the wavelength of maximumresponse Sm(lm). The 3rd term of
O

equation (4.3.5) is a measure of the size of this bandpass; it yields the

second order moment:

(4.3.8) _2(_o) - f S(%)(i-lo)2dl / f S(%)dl .

Higher order moments define the shape of the bandpass.

Substitution of equations (4.3.6) and (4.3.7) in (4.3.5) gives:

(4.3.9) F - [L(% ) + ½_2 L"(_ ) + ...] _ S(l)dl .
O O

Equations (4.3.7), (4.3.8), and (4.3.9), comprise the System Response Solution

to the heterochromatic problem.

Case (ii).

By equation (4.3.4), li must be chosen to ensure that:

(4.3.10) F - L(_ i) _ S(_)d_ •

But equation (4.3.9) is also true; thus:

(4.3.11) L(li ) , L(lo ) + _2 n..(ko) + ...

Moreover, equation (4.3.3) is also true for any fiducial wavelength, say _ .
O

Thus:

(4.3.12)

Setting _ -
i

2

L(1) = L(lo) + L'(lo)(l-lo) + _L"(lo)(I-Io) + ...

and comparing equations (4.3.11) and (4.3.12), it follows that

the Isophotal Wavelength is:

(4.3.13) Ii = Io + _V2L"(lo)/L'(Io) + "'"

Equations (4.3.10) and (4.3.13) comprise the Isophotal Wavelength Solution to

the heterochromatic problem.

Case (iii).

Instead of equation (4.3.7), the weighting function may be changed to

give the Effective Wavelength:
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(4.3.14a) % = f %L(%)S(%)d% / f L(%)S(%)d%
e

(4.3.14b) - % + p2L'(% o) / L(% o) + ...0

with the help of equations (4.3.7) and (4.3.12). Equations (4.3.9) and

(4.3.14) comprise the Effective Wavelength Solution to the heterochromatic

problem. The cases are summarized in Table 4-1.
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The photon spectral radiance:

(4.4.1) N(_) - _L(_)/hc

gives rise to the photon radiant intensity:

(4.4.2a) H = A e f N(_)S(_)d_

(4.4.2b) = (Ae/hC) f _L(%)S(_)d%,

§4.4 p I

Table 4-2, where the relation (4.4.1) gives:

(4.4.5) hc N(_ o) = _o L(_o);

(4.4.6) hc N'(_ o) = Xo L'(Xo) + L(_o);

(4.4.7) hc N"(_ o) = _o L"(_o) + 2 L'(_ o) .

where h Is Planck's constant and c the speed of light. The function:

(4.4.3) f = f N(_)S(_)d_

is the pulse counting analogue of equation (4.3.2). As in equation (4.3.3),

L(%) may be expanded in a Taylor series about the flducial wavelength % to

give an equation analogous to (4.3.5):

(4.4.4) f = N(%) f S(%)d% + N'(%) f S(_)(%-%)d%

+ f +...

The arguments of §4.3 for L(%) also apply to N(_). The results are listed in
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§4.5 FWHMBANDWIDTH

The integrated System ResponsefS(%)dh is fundamental to all hetero-

chromatic expressions such as occur in equations (4.3.7) to (4.3.10) and in

Tables 4-1 and 4-2. For the sake of simplicity, define S by:

(4.5.1) BS = fS(h)dh ,

where:

(4.5.2) 8 = _2 - hi

is the bandwidth equal to the full width at half maximum (FWHM) of S(X),

regardless of weighting. Thus h I and %2 are defined by:

(4.5.3) S(h I) = S(h 2) = ½Sm(X m)

where _ is the wavelength at which S(X) reaches the maximum S . Equation
m m

(4.5.1) allows the integrated system response fS(X)dh to be replaced symbol-

ically by the simpler expression BS.

An approximate formula for B may be derived from the fact that the

gradient of S(_) is zero at X . Thus, correct to second order:
m

+ _(h-hm)2 S" + ...(4.5.4) S(h) = Sm m

Equations (4.5.3) and (4.5.4) give:

(4.5.5) hk = hm ± (-Sm/Sm)_ + "'"

so that:

(4.5.6) S = 2(-Sm/S_)½ + ...

(k=l,2),
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§4.6 SPECIAL SYSTEM RESPONSES

Square, quadratic, or cubic, responses S(l) (a<A<b) give the following

results:

Square:

(4.6.1a) S(I) - K, (a<l<b),

(4.6.1b) - O, (a>l>b).

(4 6.2) _ - (b+a)/2," o

(4.6.3) _2 , (b_a)2/12,

(4.6.4) 8 - (b-a),

(4.6.5) S - K.

Quadratic:

(4.6.6) S(I) = K(l-a)(b-l), (a<l<b).

(4.6.7) _ - (b+a)/2,o

(4.6.8) _2 . (b_a)2/20,

(4.6.9) 8 - (b-a)//_,

(4.6.10) S - K(b-a)2/3/_.

S(1) is symmetric and the mean wavelength is halfway between the short and long

wavelength cutoffs.

Cubic:

(4.6.11a)

(4.6.11b)

(4.6.12)

S(_) " K(_-a)(b-_)(_-c), (a<_<b), (c<a),

= K(_-a)(_-b)(_-c), (a<_<b), (c>a).

- (b+a)/2 - (b-a)_/20c + ..., ([cl>>b),
o

(4.6.13) _2 . [I - (b+a)/2c + ...] (b-a)2/20, (Icl>>b).

Exact expressions obtain for all functions in the cubic case, but first order

expressions in parameter c show up the effect of skewness in the response. The
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meanwavelength is displaced from the halfway mark by an amount that depends on

the sign and magnitude of c. In the event that Icl + _, the cubic reduces to

the quadratic case with appropriate re-definition of K.

Results for asymmetric Polsson or the symmetric Gaussian distribution

cannot be expressed in closed form owing to finite (if sometimes small)

probabilities of a positive response at "negative" wavelengths; nevertheless

the Gaussian case is addressed by Golay (1973), who gives an approximate half-

width of 2.36_ about the mean wavelength. This compares to the the exact

Gaussian half-width (Bevington 1969) of r = 2o 21_n2 = 2.355o, where o is the

standard deviation of the distribution.
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§4.7 MEANPIXEL ENERGIES

Equations (4.1.6) and (4.3.1) give:

(4.7.1) Qj - Ae f ! f F(_) at d_ d_T
J

on the assumption that A is a constant. The measured energy Q is related to
e

the incident radiance through equation (4.3.2), viz.

(4.7.2) fF(%)d% = fS(%)L(%)d_ = F

where F may be chosen from Table 4-1 and equations (4.3.9) and (4.3.10). Thus

in cases (i) and (iii):

(4.7.3) F = [L(_ o) + ½_' L"(_ o) +...] _ S(_)d_,

while in case (ii):

(4.7.4) F = L(_i) f S(_)d_.

where the arguments of L are given by equations (4.3.7) or (4.3.13).

In all cases, the ubiquitous integrated system response may be express-

ed in terms of S and the FWHM bandwidth B according to equation (4.5.1). So

equations (4.7.3) and (4.7.4) are more simply written either as:

(4.7.5) F = B S L(_ ),
o

[where the argument of L identifies the relevant case (i) or (ill)I, or as:

(4.7.6) F = B S L(_ i)

in case (ii).

On the assumption that B and S are independent of time and direction,

equation (4.7.1) becomes:

(4.7.7) qj = Ae B S Tf mf L(%) dt d_

J

where the characteristic wavelength $ is summoned to represent either of the
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arguments of L in equations (4.7.5) and (4.7.6).

From Table 4-1, it is clear that L(_) maydepend on one or both of

time and direction through one or both of L and _; i.e. the spectral radiance

L(%) may change in intensity or shape over time or direction. Meanvalues are

therefore called for, in the sense of equation (4.1.7). Thus equation (4.7.7)

may be written as:

(4.7.8) Qj - Ae T B S _j Lj

where it goes without saying that the abbreviated notation Lj represents an

average both over time and the solid angle of pixel j, and is to be evaluated

according to the prescriptions and wavelengths characteristic of cases (i),

(ii), or (iii) [Table 4-1].

The radiance Lj at the aperture of the telescope mayarise from the

emissivity both of a source "s" as well as an intervening medium"m". Also,

the detector "d" itself will contribute to the detected energy. Thus equation

(4.7.8) leads to the measured total energy for pixel j:

(4.7.9a) Qj(s+m+d) = Qj(s) + Qj(m) + Qj(d)

(4.7.9b) = Ae T 8 S _j [Lj(s) + Lj(m)] + Qj(d).

The radiances L(s) and L(m) are effectively unrelated and are thus linearly

additive, and each has its own characteristic wavelength.



Table 4-1.

Optical System Parameters for Energy Integratfon.

BRIGHTNESSES:

Cases (i), (lil)

F = [L(I o) + %p2 L..(lo) +.

Case (tt)

..] f S(l)dX F = L(li) f S(X)dl

WAVELENGTHS:

Case (I)

O

P" = f S(X)(X-Xo)'dX / f S(X)dX

Case (ttt)

= I + V 2 L'(lo)/L(lo)____ + ...e o

Case (11)

li = _o + %V2L"(lo) / L'(lo ) +''"

Table 4-2.

Optical System Parameters for Photon Counting.

BRIGHTNESSES:

Cases (i), (ill)

f = [N(I o) + %V" N"(I o) +

WAVELENGTHS:

...] f S(%)d%

Case (i)

= / S(l)ldl / I S(l)d%
0

P' = I S(A)(l-lo)'dX / f S(l)dl

Case (111)

= _ + p2 N'(lo)/N(lo). __ _ _ + D g g

• o

Case (Ii)

f = i) f

Case (ii)

+ %p2N"(lo) / N'(I o) +...
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§4.8 DETERMINATIONOFSYSTEMRESPONSE

Knowledgeof S(_) is basic to radiometry. The energy detected by a

laboratory source of knownradiance L(%) is given by equations (4.7.1) and

(4.7.2), to which must be added a known energy owing to the detector itself.

Thus for each pixel j:

(4.8.1) Q= Ae f f _ L(_) S(%) dt d_ d% + Q(d) .
T _j

Assumethat the laboratory radiance is constant and that the pixel is uniformly

illuminated by it. Then:

(4.8.2) _ = [Q-Q(d)]/Aerm ,

or its equivalent, is a measuredand known quantity. Equation (4.8.1) becomes:

(4.8.3) _ = f L(_)S(_)d_ .

If L(_) is perfectly monochromatic for all %- _, then this ideali-

zation can be expressed as:

(4.8.4) L(_) = _(_-_) .

Equation (4.8.3) is then simply:

(4.8.5) _(_) = f S(%) (%-_)d%- S(_).

On the other hand, with the help of (K+I) radiances:

Li(%k) , (i - O,l,2,...,K)

that have sufficiently different gradients, S(%) may be determined at (K+I)

spectral points each separated by _:

(4.8.6) _ - A + _k, (k = 0,1,2,...,K).

The short and long wavelength limits are chosen so that S(A) and s(A+_K) are

effectively zero.
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(4.8.7)

where:

By Simpson's Rule:

K
#i = (¢/3) _ ck Li,k(Ik)Sk(Xk),

k=0

(4.8.8) ck "

I, (k = 0,K)

4, (k - 1,3,...,K-l)

2, (k = 2,4,...,K-2).

[_] - [L]-I.[_]

gives S(1) at the discrete wavelength intervals of equation (4.8.6) with the

help of equations (4.8.8) and (4.8.9). The gradients of the radiances L(I)

must differ sufficiently to avoid ill-conditioning.

(4.8.1o)

Then:

(4.8.11)

Let:

(4.8.9) _k = (E/3)CkSk "

In matrix notation, equation (4.8.7) becomes:

[_] - [L]-EV ]
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V. ATMOSPHERIC EXTINCTION

§5.1. MONO- AND HETEROCHROMATIC MAGNITUDES.

The detected heterochromatic radiance F of equations (4.3.2) or (4.7.2)

is expressible in terms of monochromatic radiances L(%), where _ may be the

mean or isophotal wavelength (Table 4-2). It is desirable to express these

quantities in terms of mono- or heterochromatic astronomical magnitudes. In

the notation of equations (4.1.4) and (4.5.1), and with the help of equations

(4.7.3) and (4.7.4), the detected heterochromatic radiance is:

F(B) = f L(%) S(X) d_ .(5.1.1)

This is:

(5.1.2a) F(B) = L(% o) BS [I + ½B2 L.(%o)/L(Xo) + ...],

in cases (i),(iii), and:

(5.1.2b) F(B) = L(X i) BS,

in case (ii) [§4.2].

By equation (4.1.4), the detected heterochromatic illumination of solid

angle _ is:

(5.1.3) I(B,_) = f F(B) d_

In the sense of equation (4.1.7), suppose F(B,_) is an average over solid angle

_, which is often simply the solid angle subtended by a pixel. Then:

(5.1.4) I(B,_) = _ F(B,_) •

By equations (5.1.2a,b), F(B,_) is expressible in terms of radiances which are

also averages over the plxel; thus:

(5.1.5a) F(B,_) = L(%o,_) BS [I + ½B2 L.(%o,_)/L(%o,_) + ...],

in cases (i),(lii), and:

(5.I.5b) F(B,_) = L(%i,_) BS,

in case (ii).
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Thus heterochromatic magnitudes corresponding to the pixel solid angle

may be calculated from measuredor known quantities. By equation (4.1.8):

(5.1.6) m(B,_) = m(°)(8) - 2.5 log I(B,fl).

Since:

(5.1.7) log(l+x) = loge (x + ...), (x<<l),

equations (5.1.4) - (5.1.6) give:

m(B,n) - m(°)(_)

(5.1.8a) I -2.5 [logL(_o,_) + log_8S + loge _u2L"(Io,_)/L(Ao,_) + ...],

(5.1.8b) = -2.5 [logL(li,_) + log_SS].

in the various cases (i)-(iii). In this way, measured illumination is

expressed in magnitudes.

Evidently, it should be possible to estimate monochromatic magnitudes

at the mean and isophotal wavelengths from the heterochromatic magnitudes of

equations (5.1.Sa,b). Let the spectral illumination incident upon the

objective of the telescope be:

(5.1.9) J(l,n) - f L(%) d_.

Again in the sense of equation (4.1.7), this is:

(5.1.10) J(X,_) = fl L(%,_) .

Define monochromatic magnitudes at the telescope objective, and over _, to be:

(5.1.11) m(_,n) - m(°)(X) = -2.5 log J(_,n),

where m(°)(l) is the magnitude zero-point corresponding to wavelength _. Let

be either lo or hi; then equations (5.1.10) and (5.1.11) enable L(%o,_) or

L(%i,_ ) to be eliminated from equations (5.1.8a,b). Thus:

m(B,n) - m(°)(B)

• = ,_)/L(%o,_)+... ](5.1 12a) m(_o,_)-m(°)(_o) - 2.5[logBS + loge ½_2L"(_ °

(5.1.12b) = m(%i,_ ) - m(°)(_ i) - 2.5 loges .
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§5.2. MONOCHROmaTICMAGNITUDERELATIONS

The relation between m(lo) and m(li) follows directly from equations

(5.1.12a) and (5.1.12b):

m(li) - m(°)(li )

(5.2.1) = m(lo) - m(°)(l o) -2.5 loge ½ 2 L,.(lo)/L(lo) + ...

where for notational simplicity the argument of solid angle is suppressed.

find the corresponding relation for the effective wavelength le' use the

L'(le) ] + ... to get:expansion IL(1) = leL(l e) + (l-le)[L(l e) + I e

f%L(_)S(1)d_ - XeL(le)fS(1)dX + [L(% e) + Xet'(Xe)]f(X-Xe)S(1)dl + ...

By definitions (4.3.6) and (4.5.1), f(%-Xe)S(%)dl = (Xo-le)SS, so that:

fXL(X)S(1)dX = [lee(le ) + {e(l e) + XeL'(le)}(lo-le)]BS + ...

Substitution of this into the definition (4.3.14a) of Xe, gives:

ft(1)S(1)dl = e(le)[l+{L(le)+leL'(le)}(lo-le)/leL(Xe)+...]gS.

But by equations (4.3.2) and (4.3.4), the left-hand side is just L(Ii)BS.

(5.2.2) L(I i) = L(I e) [i + {i + leL'(le)/L(le)}{(lo/le)-l} + ...].

Conversion to magnitudes is accomplished by using equations (5.1.10) and

(5.1.11), and the approximation (5.1.7) gives:

(5.2.3)

To

So:

m(li) - m(°)(li)

= - °)(le) . L'(le)/L(le)] + ...m(le) m ( -2.51oge[(lo/le)-l][l+le

Nevertheless, it is desirable to express all monochromatic magnitudes

in terms of quantities that depend only on Io" By equation (4.3.14b):

I - Io/I e I _2L,(lo)/loL(lo) + ....

Also L(le) = L(lo) + (le-lo)L'(lo) + ..., and L'(le) = L'(I o) + ....

reduction gives:

(5.2.4)

Further

m(le) - m(°)(le)

= m(lo) - m(°)(lo)

-l.251oge _2 [L,,(lo)/L(lo)+2L,(lo)/loL(lo)+2{L,(lo)/L(lo)}2].
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§5.3. MONOCHROMATICEXTINCTION.

The rule by which monochromatic radiance is diminished by the atmosphere is

simply:

(5.3.1) L(l,z) = Lo(1) exp[-k(1)M(z)].

Here and henceforth, subscripts "o" denotes values outside the atmosphere; k(_) is

the monochromatic extinction coefficient; and M(z) signifies the relative air mass

at zenith angle z in units of the air mass at the zenith. For many practical

purposes:

(5.3.2) M(z) - sec z

to an accuracy of 1% up to z - 65°; more accurate values are tabulated by

Schoenberg (1929), and may be calculated from Bemporad's formula:

(5.3.3) M(z) = sec z - al(sec z -i) - a2(sec z -1) 2 - a3(sec z -1) 3 ,

where ai (I=1,2,3) are small coefficients (Hardie 1962). Equation (5.3.3) is

valid to z - 80 ° with an accuracy of perhaps 1%.

Generalize the definition (5.1.11) to cover unextinguished monochromatic

magnitudes:

(5.3.4) mo(l,_) - m(°)(1) = -2.5 log _Lo(A,_).

Similarly, for extinguished magnitudes:

(5.3.5) m(_,_,z) - m(°)(_) = -2.5 log _L(_,_,z)

= (_,_)exp[-k(_)M(z)].-2.5 log _L °

In particular, _ may be either the mean or isophotal wavelength. Subtraction and

suppression of the argument _ gives:

(5.3.6) m(_,z) = m (_) + 2.51oge k(_)M(z)
o

with 2.51oge = 1.086. This and equation (5.3.1) is the Lambert-Bouguer Law; its

simplicity tempts photometrists to seek a similar relation for heterochro-

matlc extlnction, hut the wider the bandpass the more corrections are required.
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§5.4. BANDPASSEFFECTSONEXTINCTION.

The heterochromatic magnitude m(8,_) of equation (5.1.6) corresponds to

a detected illumination over solid angle _ and bandpass 8; in the case of

atmospheric extinction, it should be rewritten as:

(5.4.1) m(8,fl,z) -m(°)(8) ffi-2.5 log l(8,_,z),

in order to signify that l(8,_,z) is detected when the telescope points at an

angle z from the zenith. The definition of I must be modified to account for

zenith angle. By equations (5.1.3) and (5.1.4), we let:

(5.4.2) l(B,_,z) = f F(B,z) dm - _ F(B,z) ,

where as before we are concerned with radiances averaged over the smallest

resolution element. Thus with the help of equation (5.1.2a) [cases (i) and

(iii)], the extinguished illumination is:

l(B,_,z) = L(lo,Z) _8S [I +_2L"(lo,Z)/L(lo,Z) + ...],(5.4.3)

while in case (it):

(5.4.4) l(8,_,z) = L(li,z) _8S •

In equation (5.4.3), the approximation in square brackets involves the detected

monochromatic radiance and its second derivative evaluated at
o"

With the help of equation (5.3.5), the extinguished monochromatic

radiance L(lo,Z) or L(ll,z) in equations (5.4.3) or (5.4.4) may be expressed

readily in terms of the monochromatic extinction coefficient k(l o) or k(li)

respectively. However in the case of equation (5.4.3), the heterochromatlc

illumination is also dependent on the 2nd derivative of the detected radiance

L(lo,Z); and this 2nd derivative will in turn entail knowledge of the 2nd

derivative of k(lo) as well as L"(lo).
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(5.4.5)
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By use of equations (5.3.1), (5.4.3), and (5.1.7), equation (5.4.1)

m(8,n,z) - m(°)(S)

- -2.5 log 8S -2.5 log [_L(lo)]

d 2 • . . -k(_ )M(z)}/Lo(_o) e-k(_o)M(z) +.-2.51oge %_2 d___2_Lo(Ao) e o ..
O

But equation (5.3.5) can eliminate the second term in favor of extinguished

monochromatic magnitudes at the mean wavelength. It follows that:

(5.4.6) m(8,_,z) - m(°)(S)

- m(lo,_,z ) - m(°)(_o) - 2.5 log 8S

d 2 • -k(_ )M(z)}/Lo(_o) e-k(_o)M(z) +.-2.51oge %_2 d__=_Lo(_o)e o ..
O

In the event that there is no air mass, M(z) - 0, and equation (5.4.6) becomes:

(5.4.7) mo(8,n) - m(°)(8)

m(°)(_o) 2.51ogBS= mo(_o,n) -

-2.51oge %_2 Lo(_o)/Lo(_o ) + ...

Again, the argument of solid angle may be omitted in equations (5.4.6)

and (5.4.7), bearing in mind that it is implied for magnitudes so calculated.

On subtracting equations (5.4.6) and (5.4.7), the magnitude zero-polnts and the

bandwldth-sensltlvlty factor 8S fall away as they should. The heterochromatlc

extinction correction m(B,z) - mo(8) is then expressible in terms of the

monochromatic extinction correction m(lo,z) - m(%o), which in turn is given by

the equation (5.3.6). Thus:

(5.4.8) m(B,z) - mo(8) " 2.5 loge k(lo)M(z)

d _ e-k(%o)M(z)
-2.51oge %_2 d-_--'{Lo(%o )e-k(l°)M(z) }/Lo(lo) +''"

O

;#

+2.51oge %_2 Lo(lo)/Lo(lo ) + ...

Equation (5.4.8) reduces to (5.3.6) only for narrow-band photometry (i.e.

negligibly small).
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Inspection of equation (5.4.8) shows-that the term containing

L"(%o)/Lo(%o)ocancels, but the term containing L_(%o)/Lo(%o) does not. Let:

(5.4.9) L_(_o)/Lo(Xo) = inlO dlogeo(Xo)/dX °

[log Lo(l_) - log eo(Xo)]/[X_-Xo] + ...lnlO

where %+>% by the conventional use of forward differences. But by equation
0 0

(5.4.5), the difference in the logarithms of L at the two mean wavelengths may
o

be expressed in terms of the difference in the heterochromatic magnitudes at

these mean wavelengths; leading terms only need to be considered in this

approximation. Thus equation (5.4.9) leads to:

(5.4.10) 2.5 LA(Xo)/L_Xo)

- InlO [mo(8)-mo(B+)-m(°)(8)+m(°)(8+)-2.51og(8+S+/SS)]/[_-Xo ]

• • •

where:

(5.4.11) mo(8)-mo(8 +) = ro(8,8 +)

is a color index outside the atmosphere. The approximations (5.4.9) and

(5.4.10) assume that the mean wavelengths _+ and _ corresponding to
o 0

bandpasses 8+ and 8 are not too far apart.

The required differentiations in equation (5.4.8) give the leading

terms of the appropriate heterochromatic extinction law in terms of color

index F, bandpass sensitivity factors 8S, magnitude zero-points, and k(lo) and

its derivatives k'(lo) and k"(lo). With the help of equation (5.4.10), the law

is:

(5.4.11) m(8,z) - m (8)
o

- [kl(8) + k2(B)ro(B,B+)]M(z) + k3(B)M=(z) + ...

in which the new extinction coefficients are now labelled appropriately in

broadband notation. They are:
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(5.4.12a) kl(B) = 2.51oge k(Xo ) + 2.51oge ½_2k"(Xo )

+ k2(B) [m(°)(B+)-m(°)(B) + 2.5 Iog(BS/B+S+)],

(5.4.12b) k2(B) = _=k'(Xo)/(l_-lo),

(5.4.12c) _ k3(B ) = 1.25 loge [_(_o)k'(_o)] =.

The leading term in the estimation of heterochromatlc extinction would still

obey Bouger's law were it not for terms in the color index and a quadratic term

in air mass. Conditions for neglect of these terms is derived in the next

section.
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§5.5. CONDITIONSFORNEGLECTOFTERMS.

It is instructive to estimate the various contributions to each

extinction coefficient ki(B) (i=1,2,3) in equations (5.4.12a-c). For

illustrative purposes, choose the Johnson UBVsystem (Johnson 1966), whose

system parameters are listed in the first three columns of Table 5-1. In

addition, estimates for k(B) and its derivatives are needed. For this purpose,

a surprisingly accurate fit to monochromatic extinction is:

(5.5.1) k(%) = 0.24 (0.447/%) 3.

All wavelengths are measured in microns. Equation (5.5.1) is a quasi-Rayleigh

scattering law, and supplies the last three columns of Table 5-1, which are

used to derive the values in Table 5-2.

The second and third columns of Table 5-2 account for the first two

terms in kl(_) [equation (5.4.12a)]. In all cases, the dominant term is still

the monochromatic extinction 1.087k(%o); the second term in equation (5.4.12a)

is 1½orders of magnitude less, while the last term of kl(_) is even smaller

(since both the zero-point magnitude difference of the Johnson system, and the

logarithm of the relative bandpass-sensitivities, are small).

The fourth column of Table 5-2 gives the term k2(B) which multiplies

the color index:

(5.5.2) ro(8,8 +) = (U-B)o or (B-V) °

in the forward difference convention of equation (5.4.9). The values listed

show that the color index contribution is more than an order of magnitude

smaller than the leading term in kl(8), thereby warranting the label "second

order extinction coefficient".

The last column of Table 5-2 gives the term multiplying the square of

the relative air mass; the smallness of k3(8) may be deceptive, since the

product k3(8)M=(z) may be significant at large air masses.
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An absolute criterion for the neglect of the color index term is that:

(5.5.3) [k2(B)FoM(Z)l _ g

For purposes of estimation, take M(z) = sec z [equation (5.3.2)]. Thus:

(5.5.4) IF I _ E cos z / k2(B)0

Table 5-3 gives the ranges of permissible color indices U-B and B-V [equation

(5.5.2)], for e=O.Ol (appropriate for 1% photometry), as a function of zenith

angle z. It is seen that the smaller the zenith distance z, the greater the

latitude of color indices that permit neglect of the second order color term;

and in theory, only color indices close to zero are permitted down to the

horizon.

The absolute condition for neglect of the quadratic air mass correction

is:

(5.5.5)

or:

(5.5.6)

k3(B ) M=(z) _ e,

sec z _ Jc/k3(B) .

Table 5-4 gives ranges of zenith angle z over which the term may be neglected,

for 1% or 2% photometry in U or B. Curvature in the Bouger-type linear

relation is expected for observations that extend beyond these limits.



Table 5-1.
System parameters and monochromatic extinction
terms for the Johnson UBVphotometric system.

U

B

V

n = (nix)2 X k(X ) k'(X o)o o o k"(Xo)

4.6xi0 -4 3.76xi0 -3 0.350 0.50 -4.3 49

1.3xlO -3 6.53xi0 -3 0.477 0.24 -1.6 14

1.6xlO -3 5.22xi0 -3 0.556 0.13 -0.67 4.8

Table 5-2.

Component contributions to heterochromatic extinction.

1.087k(Xo) 0.543_2k"(X o) k2(B) k3(B)o

0.350 0.54 0.012 0.020 -0.0046

0.477 0.26 0.010 0.019 -0.0018

0.556 0.14 0.0042 - -0.0004



Table 5-3.
Rangesof permissible Color Indices for 1%photometry.

z 0° i0 ° 20 ° 30 ° 40 ° 50 ° 60o 70° 80°

-+(U-B) °

+(B-V) °

0.50 0.49 0.47 0.43 0.38 0.32 0.25 0.17 0.09

0.53 0.52 0.49 0.46 0.40 0.34 0.26 0.18 0.09

Table 5-4.

Ranges of permissible zenith distance for photometry in U and B.

e 0.01 0.02

z(U)

z(B)
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§5.6. EFFECTIVE WAVELENGTH CORRECTION.

The results of §5.4 et seq. pertain to case (i) (§4.2 and Table 4-1).

In the event that magnitudes are required at the effective wavelength ke [case

(iii)], it is seen from Table 4-1 that the previously derived magnitudes are

unchanged, but k must be calculated from equation (4.3.14), viz.
e

= k + _= L'(ko)/L(%o)____ + ....
e o

This expression must now be rewritten to account for extinction.

At the detector:

(5.6.1) (z) = % + B2 L,(ko,Z)/L(ko,Z) + ... ,e o

whereas at the top of the atmosphere:

(5 6.2) k = k + _=" e,o o Lo(%o)/Lo(Xo) + ....

The difference between equations (5.6.1) and (5.6.2) gives the correction that

must be applied to find the extra-atmospheric effective wavelength:

(5.6.3) ke,o-ke(Z) = _2[L_(ko)/Lo(ko)-L'(ko,Z)/L(ko,Z)] + ....

The monochromatic extinction law (5.3.1) gives the difference of the ratios:

(5.6.4) ,z) = k'(%o) M(z)L_(ko)/Lo(ko)-L'(ko,Z)/L(ko

and it follows that the effective wavelength correction can be written in a

remarkably tidy form:

(5.6.5) ke,o_ke(Z ) = B2 k,(ko) M(z)

By equation (5.4.12b), the correction may be expressed in terms of the

second order heterochromatic extinction coefficient:

(5.6.6) ke,o-ke(Z) = (k_-k o) k2(_) M(z) .

Equations (5.6.5) and (5.6.6) imply that 2-color photometry is necessary to

derive the effective wavelength correction. The value of the correction may be
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estimated for the Johnson UBVsystem with the help of Table 5-2; given that

+ ) _ 0.i the correction is _ 0.002 M(z) and ink2(B) _ 0.02, and that (_o_o '

fact need not be applied at air masses less than about 5 (z _ 78°) in order to

achieve an accuracy of 1%.

The extra-atmospheric effective wavelength may be derived directly from

equation (5.6.2), with the help of equations (5.4.10) and (5.4.11):

(5.6.7)

e,o o

+ 0.41nlO 2 [Fo(8,8_)_m(O)(B)_m(O)(B_)_2.51og(8+S+/BS)]/(X___o)---

Q g , ,

It would seem reasonable to write an analogous equation for the observed

effective wavelength:

(5.6.8)

he(Z) = %0

+ 0.41nlO 2 [F(B,B_)_m(O)(8)_m(O)(B_)_2.51og(8+S+/SS)]/(A__%o )

• u, •

The difference between (5.6.7) and (5.6.8) is simply:

+ ;(5.6.9) Xe,o-Xe(Z) = 0.41n10 2 [ro( B ,8)_r(g+,B)]/(X _Xo),

which at first glance seems to bear little resemblance to equation (5.6.6).

However, with the help of the definition (5.4.1i) of color index F, this

difference becomes:

(5.6.10) Xe,o-Xe(Z) = 0.41n10 U2 [kI(B+)M(z) + ... +k3(B+)M2(z)

-kl(B)M(z ) - ,.. -k3(g)M2(z)]/(X_-Xo),

in which leading terms only are retained (i.e. the second order chromatic terms

are justifiably neglected). The terms in k 3 can be neglected too provided:
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M(z) _ elkl(B)/k3(B) _(5.6.11)

Equation (5.6.11) for neglect of the term in M2(z) differs from the criterion

(5.5.5) inasmuch as it is a relative (not an absolute) criterion. Moreover,

since equation (5.6.10) is already of second order, it is reasonable to take

to be 10%. Then from Table 5-2, M(z) must be less than about 12 in the worst

case.

Thus equation (5.6.10) becomes:

(5.6.11) h -he(Z ) = 0.41nlO _2 M(z) [kl(B+)-kl(B)]/(h_-ho ),
e,o

which can be written:

(5.6.12) h _he(Z ) = _2 M(z) [k(_)-k(Xo)]/(h_-Xo),
e,o

with the help of equation (2.4.12a). Equations (5.6.5) and (5.6.12) are one

and the same to first order.
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Vl. SURFACE BRIGHTNESS FROM STANDARD STARS.

§6.1. Radiative Transfer

If the Earth's atmosphere extinguishes light, it must also emit light.

Let _ and _j_ be the mass extinction and emission coefficients at density 0 in

the atmosphere. If the optical depth % of the atmosphere increases along the

direction of an incoming light ray, then:

(6.1.1) dr = - K 0 ds ,

where the pathlength s is measured outward. An incoming ray of radiance L at

frequency _ is governed by the equation of radiative transfer (Goody 1964):

dL

(6.1.2) - __ = L - S
Td

where :

(6.1.3) S : j /_

is the source function.

The integrating factor exp(% ) enables a formal solution to equation

(6.1.2) to be found:

(6.1.4)

T

L (T) = L (O)exp(-T) + f_ S (T_) exp(-T +T_) dT_
o

The first term in equation (6.1.4) is simply the Bouguer-Lambert Law (5.3.1),

according to which the incoming radiance L (0) at the top of the atmosphere is

attenuated by exp(-T ) by the time it reaches the telescope. When the source

function is not negligible, the Bouguer-Lambert term must be augmented by the

second term, which accounts for atmospheric emissivity from all points along

the line of sight. The source function is attenuated over the optical

thickness from the source to the telescope, and integrated over all sources to

the top of the atmosphere.
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If the source function were to depend solely on the radiance imposed at

the top of the atmosphere, then equation (6.1.4) would be an integral equation

for L. In the present case, S_ is completely dominated by other sources,

whose net effect is to provide illumination to the night sky. Equation (6.1.4)

can then be written as the sum of the attenuated radiance of a source "*"

observed at zenith distance z through an optical thickness T (z), and the

contribution from the sky "s":

(6.1.5) L (z) = L ,o(*) exp[-_ (z)] + L (z,s).
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§6.2. Detected Energies.

Consider a detector that is energy cumulative, and consider each term

of equation (6.1.5) in turn.

(a) Celestial Sources.

The energy arising from a source "*" of attenuated radiance L(X,z;*)

seen at zenith distance z is to be found from the first term of equation

(6.1.5). Following equation (4.1.6), the attenuated starlight supplies an

energy to solid angle _. of pixel j through a bandpass B at zenith distance z,J
of:

Qj(B,0Jj,Z;*) = f f f f s(%) L(%,z;*) d%d_ dt da .
A T _. 8
e 3

Assumethat the integrand is independent of areal effects; then:

(6.2.1) Qj(B,_j,z;*) = A f f f S(%) L(%,z;*) d_ d_ dt
e T _j B

By equation (5.1.1), the detected heterochromatic radiance of the attenuated

starlight is:

(6.2.2) F(B,z;*) = f S(%) L(%,z;*) d% ,
8

so that equation (6.2.1) becomes:

(6.2.3) Qj(8,_j,z;*) = A f f F(B,z;*) d_ dt
e T_.

3

By equation (5.4.2), the detected illumination of the attenuated starlight is:

(6.2.4) l(B,_j,z;*) = f F(_,z;*) d_ ,

J

so that equation (6.2.3) becomes:

(6.2.5)
Qj(B,_j,z;*) = Ae Tf l(B,_j,z;*) dt

By equation (5.4.1), which is adapted from equation (4.1.8), the illumination
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is expressed in apparent magnitudes over the solid angle _. as:3

-0.4[m(B,_j,z;*) - m(°)(B)]
(6.2.6) I(B,mj,z;*) = i0

Consequently, equation (5.2.5) is:

-0.4[m(B,_j,z;*) - m(°)(B)]
(6.2.7) Qj(8,_j,z;*) = A f i0 dt .e T

The detected energy can be expressed in terms of magnitudes outside the

atmosphere by use of equation (5.4.11); the argument of solid angle was

suppressed there, and may now be reinstated, to give:

(6.2.8) Qj(8,_j,z;*)

-0.4[mo(B,wj;*)-m(°)(B)+{kl(8)+k2(B)r(8,B+,_j)}M(z)+k3(B)M2(z)]
=A f I0 _D_.

e
T

Note that the argument of m in equation (6.2.8) clearly implies that
o

m is the unattenuated magnitude merely of that part of an image that happens
o

to fall in the pixel solid angle _j. Thus if the source is a star, mo would

equal the unattenuated star magnitude either when the pixel solid angle is

large enough to accomodate the attenuated (and therefore blurred) image, or if

many pixels are used to cover the image. The former case presents no further

complication.

In the latter case, summation over a sufficient number of pixels, say:

(6.2.9) j = 1,2,...,J ,

must occur in order to ensure that all of the attenuated energy is accumulated.

In the case of stars, their apparent sizes have been discussed by Young (1974),

from which the value of J may be derived. Let:

J

(6.2.10) _ -- _

j_-i j '

be the solid angle, generously configured to encompass the image. As a result,
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equations (6.2.8) and (6.2.10) lead to:

(6.2.11)

J

Q(S,_,z;*) = [ Q.(S .z)
j=l j '_J'

J -0.4 [mo(B, _j ;*)-m(°) (B)+{kl (B)+k2(B) F( B, B+, _j) }M(z)+k3(8)M2 (z) ]
=A I flO

ej=l T

A further property of equations (6.2.8) and (6.2.11) is noteworthy.

Factors in the integrand arising from the first two terms of the exponent are

(or may) be constant in time, but the terms in air mass M(z) are generally not

because z is a function of time. Moreover, even at a given instant, M(z)

varies across a pixel or a star image. Therefore make the assumptions (whose

bounds of validity will be discussed later):

(6.2.12a)

and:

The integration time T is sufficiently brief that a

mean air mass can replace M(z) in equation (6.2.11).

(6.2.12b) Air mass varies insignificantly

across pixels and star images.

Without further ado, equation (6.2.8) becomes:

(6.2.13) Qj(B,_j,z;*)

-0.4[mo(_,wj;*)-m(°)(B)+{kl(_)+k2(B)F(_,B+,_j)}M(z)+k3(B)M2(z)]
= A T i0

e

while equation (6.2.11) becomes:

(6.2.14)

J

Q(B,f_,z;*) = Y. Q.(B,_Oj,z;*)
j=l j

=A
e

-0.4[mo(B,_;*)-m(°)(B)+{kl(B)+k2(8)F(B,8+,Q)}M(z)+k3(B)M2(z)]
T i0

Equation (6.2.14) is a summation over j of the preceding equation, and

so it must be possible to relate the magnitudes occurring in both. Taking the

ratio in light of assumption (6.2.12b), it follows that:
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(6.2.15)
-0-4[mo(B,fl;*)-mo(B,_j;*)]

Q(B,fl,z;*)/Q(B,_j,z;*) = iO

in which the z-dependence is redundant given the cancellation of extinction

corrections. In fact, a similar quotient maybe formed from equation (6.2.6)

and its analogue in _, so equation (6.2.15) holds for apparent magnitudes as

well.

In reality, (6.2.15) is a flexible equation describing the relation

betweenmagnitudes detected by different solid angles. Only the solid angle

arguments need retained in an obvious notation:

-0.4[m(_;*)-m(_ ;*)]
(6.2.16) Q(_;*)/Qj(_j;*) = i0 J

With the help of equations (6.2.6) and (6.2.4), the quotient is:

-0.4[m(_;*)-m(_j;*)]
(6.2.17) i0 =

Suppose fl comprises J pixels of size _..
J

the numerator can be written:

f F(w;*)dw / f F(_;*)dw .

J

By analogy with equation (6.2.10),

J

(6.2.18) f F(w;*)dw = [ f F(_;*)d_ .

j--I_j

With a resolution of _. one can do no better than to let _.(*) be an average
3 J

for the pixel. Then:

(6.2.19) f F(_;*)d_ =

J

The quotient (6.2.16) becomes:

_'(*)j _j •

(6.2.20) Q(_;*)/Qj(_j;*)

J

j=l cJ( J

If a source has a uniform surface brightness, then all #j(*)'s are equal, and:

(6.2.21)
Q(_;*)/Q3(_j; *)

-0.4[m(fl;*)-m(_ ;*)]
= lo J
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This could also have been derived from equation (5.1.6). Thus for example, if

'°*" denotes the sky "s" of uniform surface brightness, i0 pixels are 2.5 mag

brighter than i pixel.

(b) The Sky.

Similar arguments pertain to the derivation of energies deposited by

the sky. By analogy with equation (6.2.7):

-0.4[m(B,_j,z;s) - m(°)(8)]

(6.2.22) Qj(B,mj,z.s), = Ae Tf I0 dt

There is no need to allow for extinction, since this is already accounted for

by the transfer solution (6.1.5). Again invoking assumptions (6.2.12a,b),

equation (6.2.22) gives an equation analogous to (6.2.13):

-0.4[m(S,wj,z;s)-m(°)(8)]

(6.2.23) Qj(B,_j,z;s) = Ae T i0

If attenuated stellar energy over solid angle _ is recorded in addition, then

equation (6.2.23) must be summed over all relevant pixels:

J -0.4 [m(8,wj ,z ;s)-m(°) (8) ]
(6.2.24) Q(8,_,z;s) -- A T [ i0

e
j=l

(c) Detector.

In general, the detector "d" supplies power Pj(_j;d) to each pixel.

The total energy accumulated by each pixel over integration time T is:

(6.2.25) Qj(_j;d) z f pj(wj;d) dt ,
T

while over solid angle _ the integrated energy is:

J

(6.2.26) Q(_;d) z _ f Pj(_j;d) dt .
j=l T

This quantity is regarded as known.
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The energy contribution (6.2.25) from the detector (that integrates in

bandpass B) can be expressed in equivalent magnitudes m(_j;d):

-0.4[m(_j;d)-m(°)(B)]
(6.2.27) qj(_j;d) _ AeT i0

Qj(wj;d)/AeT has the units of illumination as required by the definition of

magnitude, and is determinable under conditions of no incident light. For

solid angle _, the integrated dark current of the detector provides energy:

J -0.4 [m(_j ;d)-m(°) (B) ]
(6.2 28) Q(_;d) = A T _ I0

" e
j=l

which must be the same as that in equation (6.2.27) if _, = _ there; i.e,:
J

-0.4[m(_;d)-m(°)(8)]

(6.2 29) Q(_;d) = A T I0" e

Equations (6.2.28) and (6.2.29) (and others) also provide the rule:

-0.4 m(_)

(6.2.30) i0
J -0.4 m(mj)

j=l
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§6.3 Formal Extinction Solutions.

The difference:

(6.3.1) Qj(_,_j,z;*) = Qj(B,_j,z;*+s+d) - Qj(B,_j,z;s) - Qj(_j;d) ,

gives the attenuated energy of "*" alone, and this in turn is a function of the

extinction coefficients by equation (6.2.13). However, Qj(B,mj,z;s) cannot be

measured in the direction of "*". The standard way around this problem is to

measure the sky in the vicinity of "*" and to strike a suitable average.

Assumethat:

(6.3.2) pixels can be located near the source whose brightness
equals that of the sky in the direction of the source.

Denote such a pixel by the subscript j'; its energy is:

(6.3.3) Qj,(B,_j,,z;s+d) = Qj,(B,_j,,z;s) + Qj,(_j,;d)

By assumption (6.3.2):

(6.3.4) Qj,(B,_j,,z;s) = Qj(_,_j,z;s) ,

but generally:

(6.3.5) Qj,(_j,;d) # Qj(_j;d)

Equation (6.3.3) is therefore:

(6.3.6) Qj,(B,wj,,z;s+d) = Qj(B,_j,z;s) + Qj,(wj,;d)

Equations (6.3.6) and (6.3.1) give:

(6.3.7) Qj(S,wj,z;*)

= Qj(B,_j,z;*+s+d)-Qj,(B,_j,,z;s+d)-{Qj(_j;d)-Qj,(_j,;d)}.

Quantities on the r.h.s, are now all potentially knowable; represent them by

the difference:

(6.3.8) AQjj, (B,_j,_j,,z;*)

= Qj(B,_j,z;*+s+d)-Qj,(S,_j,,z;s+d)-{Qj(_j;d)-Qj,(_j,;d)}.

= Qj(B,_j,z;*).
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(6.3.9)

Comparison of equations (6.2.13) and (6.3.8) gives:

+0.4[mo(B,_j;*)-m(°)(B) ]

(I/Aer) I0 AQjj,(B,_j,_j,,z;*)

-0.4[{kI(B)+k2(B)Fo,j(B,B+,_j)}M(z)+k3(B)M2(z)]
= I0

(j : 1,2,... ,J).

M(z), Fj, and quantities on the l.h.s, of equation (6.3.9), are know-

able when pixel j records energy from a source of known magnitude and Color.

The color index subscript j and argument _. allows temporarily for the possib-
3

ility that the source is intrinsically extended; it will be dropped for sources

that are extrinsically extended (i.e. blurred by seeing). Also, the arguments

of AQjj, make' it clear that z in M(z) is appropriate to each j. Difficulty in

choosing pixel j' diminishes the usefulness of standard sources of large

angular extent. Resolved standard sources are more likely to be galaxies or

nebulae of small angular extent, and as such will be governed by the theory for

point sources.

For standard stars, the exponential on the r.h.s, of equation (6.3.9)

may be taken to the r.h.s, and the equation summed over J to give:

+0.4[mo(B,_;*)-m(°)(B) ]

(6.3.10) (I/A T) i0 AQ(B,_,_',z;*)
e

-0.4[{kl(B)+k2(B)ro(B,B+)}M(z)+kB(B)M2(z)]
= lO

where summation of equation (6.3.8) has given:

(6.3.11) AQ(B,_,_',z;*)

= Q(B,_,z;*+s+d)-Q'(B,_',z;s+d)-{Q(_;d)-Q'(_';d)}.

= Q(B,_,z;*) .

m and F in equation (6.3.10) are now the unattenuated magnitude and color
o o

index of a star seen through relative air mass M(z). If these and AQ(z;*) are
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known, the three unknown extinction coefficients on the r.h.s, require at least

three such stars for their determination.

Let subscripts:

(6.3.12) i = 1,2,...,I ,

denote I standard stars at zenith distances z i. Insert subscript i in

equations (6.3.10) and (6.3.11), and let Zi(z i) be -2.5 times the logarithm of

the r.h.s, of equation (6.3.10):

(6.3.13) Zi(zi)

+0"4[mo,i(B'_i ;*)-m(°)(B)] .,)]
= -2.5 log [(I/AeT ) I0 AQi(B,_i,_',zi ,

= - mo,i(8,_i;*) + m(°)(B) - 2.5 log [_Qi(8,_i,_',zi;*)/Ae T]

Thus equation (6.3.10) becomes:

(6.3.14) Zi(zi) = {kl(B)+k2(B)Fo,i(8,8+)}M(zi)+k3(8)Ma(zi), (i = 1,2,...,I).

If M(zi) is regarded as known via equations (5.3.2) or (5.3.3), then this is a

system of I simultaneous non-homogeneous linear algebraic equations in the 3

unknown extinction coefficients k£(8), £ = 1,2,3.

A minimum condition for the solution of equations (6.3.14) is that

I = 3; but this condition is only necessary, and not sufficient, as the follow-

ing case demonstrates. Let I = 3 stars have the same zenith angle z. Subtract

the I th equation from those with i = 1 and 2. System (6.3.14) is then:

(6.3.15) Zi(z ) = k2(S ) S(z) {F ° i(8 8+) - F (8,8+)} i = 1,2
, ' O,3 ' "

Only the secondary extinction coefficient can be found, and then only if the

color indices of stars i = 1,2 are sufficiently different from the third; the

extinction coefficient k I which accounts for most of the extinction, goes un-

determined. This leads to the important result: a necessary and sufficient

minimum condition for the solution of the 3 extinction coefficients is that

there be 3 standard stars with different zenith angles and color indices.
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In practice, it is necessary to overdetermine the system (6.3.14) by

use of I >> 3 standard stars having a large range of colors, and to proceed by

use of least squares. Since M(zi) is common to all terms on the r.h.s, of

equation (6.3.14), and is assumed to be known, the system to be solved may be

written as:

= kl(B)+k2(B)Fo,i(B,B+)+k3(B)M(zi ), (i _ 1,2,...,1).(6.3.16) Zi(zi)/M(z i)
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§6.4. Zenith Angle and Color Index Ranges.

A result of §6.3 is that a range of z is necessary for the solution of

of the primary extinction coefficient kI in system (6.3.14), whereas a range of

P is necessary for the solution of the secondary color coefficient k2. More-

over, the tertiary coefficient waits to assert itself at large z. Such effects

represent competing claims to significance, and thus to numerical accuracy. To

guage the situation in a preliminary way, consider the following arguments.

The range of color index affects only k2, whereas the range in air mass

M(z) is commonto all terms in equation (6.3.14). Thus, let:
i

(6.4 i) zi = z + _z i

where z is a zenith angle somewhere in the middle of the range of the I stars,

and 216zil < F.O.V. (the field of view of the detector). To evaluate the sizes

of the competing claims, it suffices to take M(z) = sec z. Then:

(6.4.2) M(z i) = sec(z±6zi),

which can be written:

(6.4.3) M(z i) = M(z) {I ± fi(_,6zi )} •

To a first approximation, let:

(6.4.4) M(z) = sec z ,

so that the function fi is exactly:

(6.4.5) fi(z,6zi) = (cos 6z i - tan z sin 6zi )-I - i.

Values of fi are listed in Table 6-1. In particular:

fi(_,0) = 0,(6.4.6)

and:

(6.4.7) fi(0,6zi) = sec 6z i - I .

- ithChoose z to be the zenith distance of the star, so that

Applying equation (6.3.14) gives:

6z I = fl(_,0) = 0.



Table 6-1

The function f(z,_z) x 102.

0° i0 ° 20 ° 30 ° 40 ° 50 °

½° 0.00 0.16 0.32 0.51 0.74 1.05

i° 0.02 0.32 0.65 1.03 1.50 2.14

2 ° 0.06 0.68 1.35 2.12 3.08 4.41

60 ° 70 ° 75 ° 80 ° 85 ° 87 °

½° 1.54 2.46 3.37 5.21 ii.i 20.0

1= 3.13 5.05 6.98 ii.0 24.9 50.0

2° 6.50 10.7 15.1 24.8 66.5 200.



(6.4.8) Zi(z i) - Zi(z I)

= ±klM(_)f i + k2M(_)[(l±fi)Fo, i
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- F ] + k3M2(z)(±2fi+f_).-4o,I

When fl = 0, the case pertaining to equation (6.3.15) is recovered

(i.e. the primary coefficient can be found only if there is a range in z). But

Ifil must then not be too large lest it be swamped by the tertiary contribu-

tions. Generally it would be desirable to have:

(6.4.9) k I _IkBM(Z)l l 2±f i l-

Table 5-2,1k31is two orders of magnitude less than k I in the Johnson system,By

so I 2±f i J _ i00 cost or:

(6.4.10) 2 - i00 cos _ < Ifil < 2 + i00 cos _ .

The more stringent inequality on the l.h.s (for stars closer than average to

the horizon) gives the absolute limit of no permissible range in z: cosz = 0.02

for an elevation angle of I°i0 ' Only narrow ranges of z are permissible if

bandpass effects beyond _2 are neglected, whereas near the zenith, large

ranges are allowed [and are desirable in fact, according to equation (6.3.15)].

Competing requirements on ranges of z and color are evident in the sec-

ond term of equation (6.4.8). Consider the conditions on the first and second

terms of (6.4.8), viz. that (i) the second term doesn't dominate the first, and

conversely (ii) the first doesn't dominate the second. For want of a number,

write these respectively as:

(6.4.11) kllfil _ Ik2[(l±fi)Fi-rl] l _ kllfil/lOO-

By Table 5-2, k2 is an order of magnitude less than kl, so that:

(6.4.12) lOlfil a l(ri-ri)±firil a Ifll/lO •

Consider two cases:

(a) if ifil is small compared to Jri-riJthen:

(6.4.13) lOlfiJ a Jri-ril a Jfil/lo
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The case of equation (6.3.15) is implicit in the first inequality, which

states also that a small range of z restricts the simultaneous solution for the

primary and color coefficients. The second inequality states that the range of

color index differences must exceed a certain fraction of Ifil in order for the

second term to be determinable to a given accuracy.

(b) if Ifil is large compared to IFi-FII, then:

(6.4.14) i0 _ IFil _ I/i0 ,

which is reasonable.
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§6.5. Apparent Magnitudes.

To describe the appearance of a pixel in magnitudes m(B,_j,z;*+s), it

is necessary to subtract detector energies Q(_j;d) from total energies

Q(B,0jj,z;*+s+d); i.e.:

-0.4[m( B,_j,z;*+s)-m (°) (_) ]
(6.5.1) Q(B,_j,z;*+s+d)-Q(_j; d) = Aer I0

With the help of equation (6.3.8), this can be expressed in terms of AQ(*):

-0.4 [m(B,_j,z ;*+s)-m(°) (B) ]

(6.5 2) A T i0" e

-- AQ(B,_j,_j,,z;*+s+d) + Q'(B,_j,,z;s+d) - Q'(_j,;d).

The appearance of the source follows from summation over J:

-0.4 [m(B, _, z ;*+s)-m(°) (8) ]

(6.5.3) A T i0
e

-- Q(B,_,z;*+s+d) - Q(_;d)

= AQ(B,_,_',z;*+s+d) + Q'(B,fl',z;s+d) - Q'(fl';d).

In particular, if "*" contributes nothing to the differences in

equations (6.5.1) and (6.5.2), then the apparent magnitude of the sky follows

from:

-0.4[m(8,_j,z;s)-m(°)(8)]

(6.5.4) A T i0
e

= Q,(B,_j,,z;s+d) - Q'(_j,;d).

More reliable statistics for sky brightness in the vicinity of a star result

from summation over J:

-0.4[m(B,_,z;s)-m(°)(B)]

(6.5.5) A T I0e

= Q'(8,_',z;s+d) - Q'(_';d).

Equation (6.2.30) may be used to reduce sky brightness to convenient units

(e.g. mag/arcsec2).
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§6.6 Derived Magnitudes.

In equation (6.3.13), let subscript "u" connote a source whoseun-

attenuated magnitude is unknown. Then by writing the color index explicitly

according to equation (5.5.2), the unattenuated magnitude in bandpass B is:

(6.6.1) mo,u(8,_,*u ) = m(°)(8) - 2.5 log [AQ(8,_,_',Zu;*U)/AeT]

- kl(B)M(Zu) - k2(8)M(Zu)[mo,u(8)-mo,u(8+)]

- k3(8)M2(Zu)

The extinction coefficients can be determined from 1>>3 standard stars, and

only the forward componentin bandpass 8+ of the color index [mo,u(8)-mo,u(8+)]

remains to be determined. To get mo,u(8+) requires a second solution in 8+
+

from a second exposure of time T+ and zenith angles z ; thus:

8+ m( + _, z+.(6.6.2) mo,u( ,_,*u) = °)(8+ ) - 2.5 log [AQ(8 ,_, , u,*U)/Ae r+]

- kl(8+)M(Z+u) - k2(8+)M(Z+u)[mo,u(8+)-mo,u(8++)]

- k3(8+)M2(Zu+) .

The need for mo,u(8+) in equation (6.6.1) arises only in the second

order color coefficient, and thus only first order terms in equation (6.6.2)
+

are necessary. Thus replace mo,u(8 ) in equation (6.6.1) by:
+

(6.6.3) mo,u(8+) _ m(°)(8+) - 2.5 log [AQ(8+,_,_ ',zu;*u)/Ae r+]

- k3(8+)M2(Z+u),

where the tertiary coefficient term is retained lest it be significant. Thus

mo,u(8,_,*u ) can be determined.

To determine the unattenuated color index of the source, the difference

between equations (6.6 i) and (6.6.2) is necessary; but to get m u(8+,_,*u)
" O, '

it is necessary to know the next forward magnitude mo,u (8+++)" This may
be

+++
found in the same way from a third solution in bandpass 8 . Thus in the

Johnson U,B,V system for example, unattenuated magnitudes (U,B) and color



indices (U-B,B-V) can be found.

(6.6.4) V = B - (B-V)

follows.

Then magnitude:
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Instead of using the forward convention of equation (5.4.9), backward

differences could also be used, in which case the analysis of equations (5.4.9)

to (5.4.12) must be reworked. Then the backward difference equivalent of

equation (6.6.4) would be: U = B + (U-B). It is noteworthy that the hetero-

chromatic coefficients kl(6) and k2(6 ) would then be slightly different, as

seen from equations (5.4.12a,b). Presumably, the magnitudes obtained by for-

ward differences would be the sameas those found by backward differences to

the accuracy retained in the analysis.

Equations (6.6.1) to (6.6.3) obtain equally for pixel solid angles _..J

Thus unattenuated surface brightnesses and colors of extended sources can be

obtained for each pixel, and reduced to convenient units (mags/arcsec2) with

the help of equation (6.2.21).
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VII. DETECTOR CALIBRATION.

§7.1 Analog Devices.

Energies Q appearing from equations (4.1.6) to (6.6.3) are required in

digital form in order for solutions to be found, yet often are recorded by

analog devices. Such devices are usually not precisely linear; an extreme

example is the photographic emulsion, though in both CCD and photographic

photometry the approach to saturation manifests itself as a curvature in the

response.

In general, the energy deposited on pixel j may be expressed as a

function of a dimensionless parameter D that measures the analog output:

(7.1.1) Q_ = Qj(Dj)

In the case of photography, D would be the specular photographic density.

Following the work of Zou, Chen, and Peterson (1981), let the function Qj(Dj)

be modeled by a polynomial series:

!iC_°) P j(Dj;p )(7.1.2) QJ =n n, '

where parameter N is assigned and p is an optimization parameter that minimizes

the discrepancy between observed and derived magnitudes of the standard stars

for the assigned N. Note specifically that the coefficients C (°) in equation
n

(7.1.2) have units of energy. In the case of photography, the polynomial P may

be the standard rectification function of Baker (1925) and Sampson (1925)

raised to the power (np):

(7.1.3)

D. np

Pn,j(Dj;p) = [I0 j - I]

Wherever energy Q has appeared in the foregoing sections, it may be

replaced by the development (7.1.2). The relevant notation signifies the

conditions that obtain; thus for example, subscript j and argument "s+d" imply
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that D.(s+d) is the analog output for plxel j for sky plus detector.
J

lieve notational overload, the bandpass arguments will be dropped.

To re-

Thus from equation (6.3.8) it follows that:

(7.1.4) AQjj,(_j,_j,,z;*)

N
" X c(°)

n
n=l

[Pn,j{Dj (*+s+d)'p}' - Pn,j'{Dj'(s+d);P}

- Pn,j{Dj(d);P} + Pn,j,{Dj '(d);pl]"

However by equation (6.3.9), this is:

(7.1.5)
-0.4[mo(_j;* ) - m (°) + klM(Z) + k2M(z)F °

A T I0
e

+ k3M2(z) ]

N

-'- X c(°)
n

n_-i
[Pn,j{Dj (*+s+d)'p}' - Pn,j'{Dj'(s+d);P}

- Pn,j{Dj(d);P} + Pn,j,{Dj,(d);p}]

Since coefficients C (°) are to be determined, they might as well be
n

replaced by:

(7.1.6) C = (I/A T) i0-0"4m(°) C (°)
n e n

Thus the effective collecting area is absorbed into determinable coefficients;

its value need not be known, but what is required is that:

(7.1.7)

A is the same wherever a
e

solution is to be applied.

Note that this limitation imposes a further constraint on the range of zenith

angles (cf. §6.4).

Equation (7.1.5) becomes therefore:

(7.1.8)
-0.4 [mo(mj;* ) + klM(Z) + k2M(z)F ° + k3M2(z) ]

I0

N

=n=l_ Cn [Pn,j{Dj(*+s+d);P} - Pn,j,{Dj,(s+d);p}

- Pn,j{Dj(d);p} + P {Djn,j' ,(d);p}].
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Summingover j yields an expression for the knownmagnitude m i(* ) of star i:
O_

(7.1.9)
-0.4 [mo,i(*) + klM(Z i) + k2M(zi)Fo,i

i0
+ k3M2(zi) ]

N J

°Ic I
n

n=l j,j'=l
[Pn,j,i{Dj,i (*+s+d);p} - Pn,j',i{Dj',i(s+d);P}

- Pn,j,i{Dj,i(d);P} + Pn,j',i{Dj',i(d);p}]

(i = 1,2,...,1).

This is a nonlinear system of equations that permits solution for the three

extinction ceofficients and the N calibration coefficients.

Equation (7.1.9) is the denoument of the foregoing analysis. Amongst

other things, it shows that ground-based detector calibration cannot be accom-

plished by use of standard stars unless extinction coefficients are simultan-

eously part of the solution. This principle has previously been asserted

(Usher 1986), but is here spelled out in complete detail, along with implicit

assumptions. In addition, the apparent disappearance of the magnitude zero-

point in the work of Zou et al., is clarified, as is the role of the effective

collecting area.

Moreover, the sky brightness will now emerge as a derived quantity,

whose value also cannot be found without a concomitant solution for extinction;

again, this principle is in accord with the equation of radiative transfer and

its solution (6.1.5). From equation (6.5.4):

(7.1.10)
-0.4m(_ ,z;s) N

i0 J' = _ C
n

n=l
[Pn,j,{Dj (s+d);p} - P j,{Dj (d);p}]' n, ' '

or from equation (6.5.5):

-0.4m(_',z;s)

(7.i.ii) I0

N J

n_-i n j = J
{Dj'(s+d);p} - P {Dj,(d);p}].' n,j'
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The appearance of pixels (i.e. with detector noise subtracted) is found

from equation (6.5.1):

(7.1.12)
-0.4m(_j,z;_ N

i0 Zn=l_ Cn [Pn,j{Dj(*+s+d);P} - Pn,j{Dj(d);P}]"

The apparent (attenuated) magnitude of a star i (i.e. with sky and detector

noise subtracted) follows from equations (7.1.9) and (5.4.11):

-0.4 m.(1zi"*)
(7.1.13) 10

N J

= I Cn _ [Pn,j,i{Dj,i (*+s+d);p} - Pn,j',i{Dj',i(s+d);p}
n=l J,j'=l

- Pn,j,i{Dj,i (d);p} + Pn,j',i{Dj',i(d);P}]"
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§7.2 Perturbation Iteration.

Given the complexity of non-linear multivariate analysis, it seems

reasonable to attempt a solution to equation (7.1.9) by linearization and

iteration, using Newton's method. Let:

(7.2.1)
J

APi,n(P) " I [Pn j,i{Dj,i (*+s+d);p} - P ,i{Dj ,i (s+d);p}
j,j'=l ' n,j' '

- P {Dj,i(d);p} + P {Dj (d)'p}]n,j,i n,j',i ',i ' '

so that equation (7.1.9) is (with self-evident notational economy):

(7.2.2)
-0.4[mi+klMi+k2MiFi+k3M_]

i0

N

= _ AP i n(p) Cn , (i = 1,2,...1).
n=l

Perturbation of both sets of coefficients gives:

(7.2.3a) k_ = k_ c) + 6k_ , (_ = 1,2,3),

(7.2.3b) C = C(c) + 8C , (n = 1,2,...,N),
n n n

where superscript (c) signifies a value initially guessed or subsequently

(c)
corrected during the iteration process. Values for k_ can be estimated from

Table 5-2 with fair accuracy; corresponding values of C (c) can be found by
n

solving equation (7.2.2), which is for this purpose a linear regression

problem.

(7.2.4)

Corrections 6k_ and 6C are therefore small, so that to first order:n

i0x = i + (inl0) x + ....

Corrections _k% and _C will be governed by the following linearizedn

system, derived by substituting equations (7.2.3a,b) into equation (7.2.2),

using equation (7.2.4), and retaining first order terms:

(7.2.5)
(c) (c) (c

0.4[mi+k I Mi+k 2 FiMi+k 3 )M_] N

0.41n10 Mi(6kl+Fi6k2+Mi6k3)+lO " I APi,n(P) 6C
n=l n

0.4[m i+1(c)'mlLv_i+"(C)FiMi+k_C)M_]_2
= I - I0

N

". _ AP i n(P) C (c)
n=l ' n
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Equation (7.2.5) is now an overdetermined linear system of the form:

(7.2.6) A X = Y ,

whose solution is (Bates and Watts 1988):

(7.2.7) X = (ATA)-I AT Y •

"T" signifies a transposed matrix. Specifically:

(7.2.8) X = I _kI 6k2 _k3 _CI 6C2 .... _CN iT '

(7.2.9) A =

0.41n10 M I .. 0.41nlO M_ &Pll(P) ... &PIN(P)

0.41n10 M 2 .. 0.41nlO M_ AP21(p) ... AP2N(P)

0.41n10 M I .. 0.41n10 M_ APII(p) ... APIN(P)

and:

(7.2.10) Y =

(c) (c) (c
0.4[ml+k 1 Ml+k 2 rlMl+k3 )M_] N

i-i0 " I APIn(P)C(C)n
n=l

0.4" ,_(c). +,(c)_ ,. +I(C)M_ ] N
[m2tKl _2 _2 12_2 _3 c(C)

i-I0 " _ AP2n(P) n
n=l

0.4[m +k(C)M +k(C)F M +k(C)M_]. N c(C)
I I I 2 I I 3 _ APln(P). .I-I0

n
n=l

Iterative solutions progress to the point where vector X gives no

improvement in the corrected coefficients, whereupon successive completed

iterations give the residual sum-of-squares function of p:

(7.2.11)

I

S(p) = _ Y_(p) •
i-1

Comparison of equations (7.2.10) and (7.2.2) shows that a best solution to the

nonlinear regression is achieved when S(p) is a minimum. Thus p is determined

for a given N and used in subsequent calculations.
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§7.3 Air Mass as Unknown.

In §7.1 and §7.2, it is assumedthat the relative air massM(z) is a

known function (5.3.2) or (5.3.3) of secant z. However the secant law is a

consequenceof the assumption of plane parallelism, and may start to fail at

larger zenith angles (§5.3), even though the law is still a fairly good

approximation.

The actual dependenceM(z) may be found as part of the solution of the

nonlinear least squares problem (7.1.9), by perturbing M(z) as well as the ex-

tinction and polynomial coefficients; thus in addition to equations (7.2.3a,b),

let:

(C)(z.) , (i=l 2, I)(7.3.1) Mi(z i) = Mi i + _Mi(zi) ' "''' '

where the initial guess M_c) might be found from equation (5.3.2). Regarding

Mi(zi) as an unknownfor every star i implies that there will always be (N+3)

more unknownsthan there are standard stars for their determination. In

practice, corrections Mi will be virtually the samewithin observational error

for stars within a particular range of zenith angle; this range might even en-

compassthe entire field of view. Let there be:

(7.3.2) m = 1,2,...,M

ranges of zenith angle for which a solution is sought, and:

(7.3.3) i = 1,2,...,I m

stars in each range, so that the sum total of available standards is still:

(7.3.4) I = I 1 + 12 + ... + Im "

The statistical analog of Newton's Method can then be applied to each band of

zenith angle.

Retention of first order perturbed terms gives the generalization of

equation (7.2.5):



(7.3.5)
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trim2 )+2k_ c)l]

+

0.4[mi+k_C)M(C)+k_C)_ M(C)+,,(c)_ (c) :]

I0
• _ APi,n(P) _Cn

n=l

=i -

0.4[m_ i+k(C)M(C)+k(C)-Im 2 riM(C)+'-(C){M_c)m m3 }2]

i0

N

• [ APi,n(P)

n-i

C n

(i = 1,2,...,Im; m - 1,2,...,M).
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§7.4 Role of Spot Sensitometry.

Spot sensitometry is sometimesused in the more intractable case of

photography. Portions of the field are exposed to sources of light "S" of:

(7.4.1) m = 1,2,...,M,

different brightnesses. To forestall reciprocity failure, the duration of the

sensitometric exposures must equal the integration time T; and to avoid contam-

ination, the calibration spots must be placed on a shielded portion of the

field.

In the case of the UKST(United KingdomSchmidt Telescope; Tritton

1983), the illumination is automatically switched on and off as the telescope

shutter opens and closes; thus calibration spots are inserted under environ-

mental conditions identical to those for the main field. Illumination is pro-

vided both (a) by projectors powered by tungsten lamps that provide seven steps

arranged sequentially on two edges of the field, and (b) by a projector of the

Kitt Peak design powered by a quartz-halogen lamp with a color correction fil-

ter that provides sixteen steps arranged in a square. The intensity of illum-

ination maybe varied to suit the exposure at hand.
th

Following §6.3, let the energy deposited in the m exposure be the

difference between the energy recorded and that contributed by the detector,

viz.:

(7.4.2) Qm(Sm)= Qm(Sm+d)- Qm(d)

The notation of equation (7.4.2) is simplified by omission of the bandpass

argument, the solid angle of the exposure (inasmuch as averages over large

numbers of pixels j = 1,2,...,J can be made), and the primes on j (since

detector contributions can only be assessed from pixels suitably near the

spots). In the case of photography, energies on the r.h.s, of equation (7.4.2)
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may be rewritten with the help of equation (7.1.2); i.e.:

N
(7.4.3) Qm(Sm)_ _ C_°) [Pnm{D(Sm+d;p)}_ Pnm{D(d;p)}] ,

n=l

where the extra polynomial subscript m is inserted without confusion to signify

the spot under consideration (i.e. P still signifies P , but for spot m).nm n

Equation (7.4.3) can be put to a variety of uses. Energies Qmmay be

known (a) absolutely, or (b) relatively; and in either case, that information

may or maynot be used in conjunction with calibration from standard stars.

The more common(indeed perhaps the only) real case is that of relative cal-

ibration, but the analysis proceeds naturally from the former.

(a) Absolute Calibration.

If Qmis known absolutely, then equation comprises M equations in N

unknowncoefficients, which by equation (7.1.6) are:

(7.4.4) C(°) = C A T I00"4m(°) .
n n e

Substitution into equation (7.4.3) reveals the connection between the absolute

energy of calibration and the magnitude zero-point [e.g. equation (6.3.9)];

thus it is reduced to dimensionless form:

(7.4.5) Qm(Sm) i0-0"4m(°)

N

(I/AeT) = _ Cn [Pnm{D(Sm+d;P)} - Pnm{D(d;p)}]
n=l

If Qm is known, then equation (7.4.5) provides M equations in N unknowns Cn.

Since N might be perhaps 3 or 4 at most, the linear system would be overdeter-

mined for the 7 to 16 spots available on UKST plates.

(b) Relative Calibration.

More reliable information is available from the ratios of supplied

energies. Take ratios conveniently (with respect to QM' say) and let:

(7.4.6) RmM(Sm,S M) = Qm(Sm)/QM(SM)
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Then:

(7.4.7a) RmM(Sm,SM) =

N

nn=l
[Pnm{D(Sm+d;p)}- Pnm{D(d;p)}]

N
Cn [PnM{D(SM+d;P)}- PnM{D(d;p)}]

n=l

' (m=l,2,...,M-1)

or on rearranging terms (and suppressing argument D for simplicity):

(7.4.7b)
N

Cn [RmM{PnM(SM+d)-PnM(d)}- {Pnm(Sm+d)-Pnm(d)}]= 0
n=l

Since relative calibration is sought, only ratios of coefficients need to be

found. Let:

(7.4.8) KnN= Cn/CN = C(°)/C (°)n N '

Equations (7.4.Ta,b) are then:

(n=l,2,...,N-l)

N-I
I KnN [RmM{PnM(SM+d)-PnM(d)}- {Pnm(Sm+d)-Pnm(d)}]

n=l

(7.4.9)
= {PNm(Sm+d)-PNm(d)}- RmM{PNM(SM+d)-PNM(d)},

(m - 1,2,...,M-I).

As noted above, relative spot sensitometry maybe used in conjunction

with calibration from standard stars, or independently. The two cases are re-

presented by equations (7.4.7b) and (7.4.9) respectively.

Whenboth standard stars and spot sensitometry are available, equation

(7.4.7b) comprises an additional M-I equations for simultaneous use with system

(7.1.9); or it may be inserted simultaneously into the perturbed system (7.2.6)

as part of the iteration procedure. Alternatively, equation (7.4.9) is an

overdetermined linear system in (N-I) unknownrelative calibration coefficients

whose solution gives the shape but not the zero-point of the calibration curve.

Relative surface brightnesses maybe obtained, but rough absolute brightnesses

may be inferred even if there is only one standard star in the field.
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§7.5 Calibration from Space.

In the absence of atmospheric emission and extinction, equation (7.1.9)

still holds, except that terms must be reinterpreted.

mo,i(* ) is the magnitude of source i attenuated only by the inter-

stellar medium; [corrections for interstellar extinction are not considered

here.]

M(z) is the relative interplanetary mass at angle z measured toward the

ecliptic. Extinction coefficients kl, k2, and k3, pertain now to the interplanetary

medium. The integrated source function of equation (6.1.5) manifests itself as

contributions "s" to the analog outputs D.
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§7.6 Reciprocity Failure

Reciprocity failure (RF) refers to the failure of a detector to main-

tain a reciprocal relation between illumination I and integration time T in the

definition of 'exposure':

(7.6.1) E = IT .

A given exposure obtains as long as I and T are inversely proportional to one

another, but the detector might not respond identically in all cases. Photo-

graphic emulsions are particularly susceptible.

Wide-angle cameras employ photographic emulsions as the detector of

choice in the study of large scale phenomena. In the case of comets with high

proper motion, the existence of morphologically interesting structures can best

be seen when the camera tracks the comet. Unfortunately, if photometric data

are to be extracted as well, standard stars will appear trailed relative to the

comet image. In this case, the detector is exposed to various levels of light

for different periods of time, so RF maymanifest itself in different responses

to high I for short T than to reciprocally low I for long T. This section com-

prises (i) the description of the problem of RF stripped of extraneous complex-

ity, followed by (ii) a schemeto overcome the difficulties.

On suppressing the argument of bandwidth B, equations (6.3.8), (7.1.4)

and (7.1.5) give:

Qj(Wj,z; *)

(7.6.2)

= A T I0-0"4[m°(_j;*) - m(°) + klM(Z) + k2F°M(z) + k3M=(z)]
e

C(°)n [Pn,j{Dj(*+s+d);P} - Pn,j,{Dj,(s+d);p}
n=l

- Pn,j{Dj(d);P} + Pn,j,{Dj,(d);p}]
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To reveal the essence of RF, assumeno detector noise, no atmospheric extinc-

tion or emission, and a single pixel solid angle. Moreover, it suffices that

the detector response be represented by a function P[D(*)]. For a star "i",

equation (7.6.2) is:

-0.4[m(*i)-m(°)
(7.6.3) Q(*i) = e[D(*i)] =AeT i0

]

In terms of illumination:

)_m(°)
-0.4[m(* i ]

(7.6.4) I(* i) = Q(*i)/AeT = P[D(*i)]/AeT = i0

In terms of exposure:

(7 6.5) E(* i) = l(*i)r = Q(*I)/A" e = P[D(*i)]/A e
= T 10-0"4[m(*i )-m(°)]

Perform a thought experiment in which two point sources are detected,

one trailed and the other not. Assume that the trailed source results from

faithful guiding on the untrailed source, but that it has zero albedo except

for a spot that is a specular reflector. The trailed source "t" (a rotating

black asteroid with a mirror?) is detected as a series of starlike images,

whereas the guided source "g" (a fixed star tracked at the sidereal rate?) is

detected as a single image. The exposure time Tt of a single image of the

trailed source is therefore shorter than the exposure time T of the guided
g

source:

(7.6.6) Tt << Tg

Suppose next that sources "t" and "g" have the same exposure E, so that

source "t" would have a brighter image if it were not trailed; i.e.:

(7.6.7) m(* t) < m(*g).

The same energy is detected in the brighter source in the shorter time, as is

detected in the fainter source in the longer time. Then if there were perfect

reciprocity between I and T:

E(* t) l(*t)T t Q(*t ) Tt lO-0"4m(*t ) Pt[D(*t)]

(7.6.8) ......
10-0"4m(*g ) P [D( ]

E(*g) l(*g)Tg Q(*g) rg g *g)

= I.
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The first four ratios are all unity by agreement and by definition of physical

quantities, but the last ratio is unity only if the subscripts makeno differ-

ence; i.e. in the absence of RF:

(7.6.9) Pt[D(*t)] = Pg[D(*g)]

In other words, the quantity D for the brighter image "t" detected over a

shorter time would equal D for the fainter image "g" detected over a longer

time, and the perfect detector would have a commonresponse P(D) under all

circumstances.

On the other hand, if RF exists, then:

(7.6.10) Pt[D(*t)] _ Pg[D(*g)].

In the experiment at hand, the problem can be handled only if a way is found to

relate Pt to Pt" This translates into different polynomial summations for the

r.h.s, of equation (7.6.2), except that with atmospheric absorption and

emission, the sky brightness and detector noise componentsare not subject to

RF to a first approximation.

The general problem is even more difficult owing to the fact that a

trailed star image, blurred by seeing, is subject also to the Fog and Inter-

mittency Effects. In the former effect, the leading parts of the trailed image

pre-expose and pre-sensitize the detector, while in the latter effect, parts of

the trail are intermittently exposed to equal brightnesses of the trailing

image (except in the extreme lateral edges). Couple these and other likely

effects, with the fact that RF is itself highly variable, and it is clear that

photometric programs on faint structures in high proper motion objects must be

designed with paramount emphasis on photometric control.

It is not sufficient merely to apply equal but oppositely directed

trailing to both standard stars and comet by tracking at a rate equal to the

sidereal rate plus half the proper motion rate. Not only will a great deal of
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morphological information be lost or difficult to retrieve; but the photometry

of a trailed point source will not be the same as the photometry of a diffuse

source, because the point source will trail onto parts of the detector pre-

exposed merely to the sky, whereas parts of the diffuse source will trail onto

other parts of itself, as well as the sky.

It is equally unsatisfactory to rely solely on sensitometry spots, for

while these are certainly helpful in acquiring relative brightnesses of the

guided source, they do not necessarily provide the zero-point of the photometry

in a reliable way. Moreover, if they are available at all, sensitometry spots

are often applied under environmental conditions different than those of the

main exposure.

We suggest that there is only one genre of solution to the problem,

with two chief variants. The underlying principle is well-known, viz. that the

existence of strict controls and the use of standard stars is the only way to

do absolute photometry. The variants divide along the following lines, accord-

ing as sensitometry spots are (a) utilized or (b) unavailable.

(a)

If sensitometry spots are available, then the goal is to use standard stars

to calibrate them! Standard stars are therefore the indirect absolute cali-

brators, and the best ones at that. A series of exposures of standard star

fields would be made, and spots inserted, under variable environments but with

identical integration times. Ideally, the laboratory conditions must be equal

to the outside environment, and spot intensities must be strictly reproducable.

All emulsions would be from the same batch, be developed together, and other-

wise be subject to egalitarian treatment throughout. Data reduction would

follow the lines of §7.4. There would be no RF problem, and indeed no need for

standard stars to be in the field of the comet. [If there are standards in the
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field, so much the better, for then they can be used to develop a library of RF

solutions (7.6.10) as a function of exposure time, incident radiance, and

detector type.] Several series through the night will monitor possible changes

in extinction and sky brightness. If the opportunity window is limited, then

the comet photometry should at least be bracketed by spot calibration. RF can

be beaten by use of a detector whose unsusceptibility can be demonstrated via

(a) above. Failing this, there is (we suggest) only one recourse.

(b)

If sensitometry spots are unavailable, a scheme must be devised to avoid the

trailing of the calibrating stars. Just as sensitometry spots are inserted on-

to the main exposure in a separate procedure, so standard stars (which now take

the place of the spots) must be inserted separately. The basic maneuver is to

allocate a potion of the detector for guided standard stars at the same mean

zenith distance as the guided comet, which is exposed separately onto the rest

of the detector. This can be accomplished by masking the relevant part of the

detector during each exposure. Each exposure has identical integration times,

and is made as soon as possible one after the other. Any trailed stars in the

field of the guided comet are then photometrically irrelevant. The net effect

is to have one's cake and eat it, for there will then exist a direct comparison

between guided photometric standards and the guided comet. The assumptions are

the same as those that obtain conventionally: that (i) the detector is uniform,

and (ii) sky brightness and environmental conditions do not change from one

part of the procedure to the next. Concerning (i), a lack of detector uniform-

ity manifests itself as random and systematic error. In the conventional tech-

nique, random error appears as noise in the calibration, and systematic error

can be ascertained from subsets of standards across the detector. In the new

technique, the role of random and systematic errors is the same for the stand-
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ard star exposure, but a systematic error across exposures can only be inferred

by extrapolation and inference. Again, the need for controls is apparent, and

is here accomplished by reversing the sequences of exposures, with rigid adher-

ence to the maxim 'ceteris paribus'. As to environmental conditions (ii),

their equality in the new technique is easier to accomplish and to monitor,

since calibration is actually accomplished at the telescope rather than in the

laboratory.

Clearly, these options require a well-designed and executed observing

program, but this is expected.
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VIII. POLYNOMIAL PROPERTIES

§8.1 BAKER-SAMPSON POLYNOMIALS

The standard rectification function of Baker (1926) and Sampson (1926)

has the form (10D-I) p, where D is the specular photographic density and p is

positive.

(8.1.1)

The generalized polynomial expansion is:

N

P = _ C (IoD-I) pn •
n

n:l

At least one coefficient C must be positive in order that P be positive in any
n

specified domain of interest of (D,logP). Any component P _ (IoD-1) pn tends to

zero as Dpn. It is the low numbered terms in the expansion that govern the low

D asymptote and thus emulate the low density part of the H&D curve. Evidently,

the lowest numbered coefficient must be positive for real exposures.

th
At large D, the n term increases as:

(8.1.2)

so that:

(8.1.3)

p _ IoDP n ,

dD/dlogP = i/pn .

This is the slope of the high D asymptote, which is less for greater p and n.

Thus for a given p in equation (8.1.1), the last term in the expansion:

CN(IOD-IlPN

governs the final slope of the polynomial expansion, regardless of the size of

CN. In fact, if CN is negative, P may eventually turn negative, and its log-

arithm is then imaginary. This is the opposite of what is required to model

saturation and the approach to solarization.

The condition for a maximum in logP vs. D may be derived by considering

the competition between only two terms, viz. the last one of the expansion and

any antecedent term, since it is the last term which will ultimately cause the

modelled H&D curve to 'turn over' while the antecedent term attempts to model
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the low density asymptote correctly. Let the terms have expansion numbersm

and n (m < n). Physical meaning obtains only when P > 0 and D > O; i.e.:

(8.1.4) P = Cm(IOD-I)pm+ Cn(10D-I) pn > 0, (D > 0).

A maximumwill exist in logP whendlogP/dD = O; but since P is itself

never zero or infinite in the domain of interest, the condition is dP/dD = O.

Thus:

(8.1.5) mC(10D-I) pm+ nC (10D-I) pn = 0 .
m n

Dividing equation (8.1.5) by m and subtracting from equation (8.1.4) gives:

_ n(8.1.6) (i _) Cn (IoD-I) pn > 0 .

Thus C < 0 since n > m, and the condition for a real maximumin logP is:n

(8.1.7) p > O, n > m, D > O, P > O; C > O, C < O .m n

Condition (8.1.7) alone is insufficient to guarantee a respectable

range of D for which logP is real; normally one expects to model a range of

densities up to, say, 3 or 4. This imposes a further restriction on the mag-

nitude of the coefficients. The value D at which a maximumin logP willmax

occur is governed by equation (8.1.5), which can be rewritten as:
D

(8.1.8) I0 max = i + (-mCm/nCn)I/p(n-m)

But any respectable value of D must be such that i makesa negligible con-max

tribution to the r.h.s. There is therefore a practical constraint on the ratio

of coefficients given by:

(8.1.9) p(n-m)Dmax _ log(-nCn/mCm), (Dmax >> I, Cn < 0, n > m).

For example, if m=l, n=2, p=0.25, D = 4, equation (8.1.9) requires that:max

Ic21 _ ci/20.

In general, in the event that the last coefficient of the expansion is

negative, and in order for a substantial area of the (D>O,logP) plane to be

occupied by real solutions:

(8.i I0) Ic I << cm, (n > m, c < 0)." n n
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§8.2 SATURATIONANDINFLECTION

Whenall coefficients in equation (8.1.1) are positive, then the entire

(D>0,1ogP) plane is occupied by real solutions. The resulting curve is wobbly,

but the simplest wobble is an inflection that results from the competition be-

tween two terms of the serles, say m and n<m. Results of the previous section

show that the lower order term governs the low D solution, and the higher order

term governs the high D solution; the low order coefficient C must always bem

positive and when the higher order coefficient C is negative it produces a' n

maximumin logP. But when the higher order coefficient Cn is positive, it pro-

duces a slope of I/pn which is less than the slope I/pm. Consequently, inflec-

tion will always occur as a flattening with increasing D, and this is now

ultimately the correct form by which to account for saturation.

The condition for inflection is d21ogP/dD2 = 0. For two terms, P is

given by equation (8.1.4), viz.:

(8.2.1) P = Cm(10D-I)pm+ Cn(IOD-I)Pn '

Thus points of inflection occur whenever D satisfies:

[m + nC(10D-l)P(n-m)][l + C(IoD-I) p(n-m)]
(8.2.2)

= pC (n-m)2 I0D (IoD-I) p(n-m)

where:

(8.2.3)

(8.2.4)

C : C /C .
n m

Condition (8.2.2) is better written as a quadratic in C:

m + C[m+n-p(n-m)210D](loD-l) p(n-m) + C2n(lOD-l) 2p(n-m) = O.

It suffices merely to consider the case m=l, n=2. Then equation (8.2.4) is:

(8.2.5) i + C[(3-plOD)(IoD-I) p] + C212(IOD-I) 2p] = O,

which has roots:

(8.2.6) C = [plOD-3±/I-6plOD+p2102D]/4(10D-I) p
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These roots are real whenever:

p2102D- 6p10D + I _ 0 .

Then:

(8.2.7)

Let Y be plOD.

(8.2.8) [Y-(3+2/2)][Y-(3-2/2)] _ 0 .

For the inequality to hold, each factor must have the samesign; either:

Y-(3+2/2) Z 0 and Y-(3-2/2) _ O,

or:

In other words:

Y-(3+2/2) _ 0 and Y-(3-2/_) & O.

(8.2.9) 3-2/2 _ Y _ 3+2/2 •

Consider each limit in turn.

For the upper limit Y & 3-2/2 of equation (8.2.9), it is easy to show

that C is always negative regardless of the sign of the square root in equation

(8.2.6). Thus:

(8.2.10) plO D _ 3-2/2 ,

corresponds always to negative C. From the previous section, these are path _

ological H&D curves that first show inflection, before ultimately reaching a

maximum in logP and reversing course.

For the lower limit Y _ 3+2/2 of equation (8.2.9), regardless of sign

in equation (8.2.6), C is always positive. Thus:

(8.2.11) plO D _ 3+2/2 ,

is the more desirable case, since inflection bends the solution in direction of

increasing logP. Two roots for C are ensured by the two signs in equation

(8.2.6), except when the equality holds, in which case:

(8.2.12) C = (plOD-3)/4(IoD-I) p



§8.2 p 3

The array of permissible values of C, and the densities at which they occur,

are displayed in Table 8-1 for positive C, and in Table 8-2 for negative C.



Table 8-1.

Values of log C (C = C /C > O, n=m+l=2) for which inflection occurs in a curve
n m

modelled by the Baker-Sampson polynomial expansion: C (IoD-1) pm + C (IoD-1) pn.
m n

D

5

4

3

2

1.7656

1.5

1.4645

1.25

i. 1635

1

0

p=O.l
3.1988 i -4.4500

2.2977 -3.3987

1.3857 -2.2866

0.3259 -1.0257

-0.3263

2.9999

2.1994

1.3935

0.5273

0.2727

-0.1941

p=0.2
-5.3009

-4.1004

-2.8944

-1.6265

-1.2770

i -0.7031

p=0.4

-0.4404

2.3010

1.7007

1.0979

0.4683

0.3015

0.0794

0.0445

-0.2408

i -6.6020

-5.2017

-3.7986

-2.3658

-2.0090

-1.5693

-1.5050

-1.0401

-0.6036



Table 8-2.

Values of C (C = C /C < O, n = m+l = 2) for which inflection occurs in a curve
n m

modelled by the Baker-Sampson polynomial expansion: C (10D-l) pm + Cn(10D-1) pn.
Ill

D p = 0.i p = 0.15 p = 0.17

0.3

0.2344

0.2

0.i

0.05836

0.05

0.01

O. 00400

0.001

O.O001

-0.7312

-0.6777

-0.6764

-0.7023

-0.7112

-0.8258

-0.9036

-1.0372

-1.3055

-0.8214

-0.9685

-1.0493

-1.0707

-1.2843

-0.9458

-0.9239 -1.0172

-i.ii00 -1.3915

-1.4116

-1.6239

-2.0452

-1.2667

-1.5556

-2.1958

-1.6084

-1.9872

-2.8100

-1.5676

-1.9287 I -2.0435-2.8419 -3.0353
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IX. NUMERICAL TESTS.

§9.1 Input Data

Verification of the theory of Zou, Chen, Peterson (1981) has been

accomplished by these authors themselves, and by Klinglesmith and Rupp (1984),

and Speck et al. (1987), using M31. These works were concerned solely with

derivation of the polynomial coefficients, and did not address the problem of

the derivation of the extinction coefficients and sky brightness. Walterbos

and Kennicut (1987) also studied M31, but relied solely on laboratory

calibration. Warnock and Klinglesmith (1984) have worked on the problem of

trailed standards.

As a first step in the development of a data reduction algorithm for

the general theory of standard star calibrators, it is necessary to formulate a

problem that will serve to test it and to reveal its numerical properties. We

seek to answer the general questions: (1) does the theory work in principle,

and in particular, can the primary extinction coefficient be derived? and (li)

are the numerical techniques satisfactory, and what are their properties?

In order to accomplish this first step, it is necessary to input den-

sities that are reasonable facsimiles of data to be expected in real cases.

Since the data available for M31 had standard stars grouped over a very narrow

range of zenith distance (cf. Speck 1987), and were moreover secured at small

zenith distance, they were unsuited to a test for a complete solution. With

the help of sensitometric densities taken from UK Schmldt plates, and from our

prior analysis of M31, a canonical data-set was established comprising 9 stars

divided into 2 groups; stars #I - #4 were located at zenith distance z = 60 ° ,

and stars #5 - #9 were located at z = 66 °. The input data are summarized

in Table 9-1. The division into two groups is necessitated by the fact that

the primary extinction coefficient cannot be determined unless there is a

sufficiently large range of z (§6.4). The chosen range of 6 ° is large enough
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to eliminate any numerical effects owing to ill-determined matrices, yet

small enough to correspond to any reasonable range of z accessible to wide-

field cameras. The background sky + fog contribution was established for each

group of stars, and the background fog contribution, assumeduniform over the

field, was similarly fixed.

Each standard star, sky, and fog frame was comprised of i0 x i0 pixels.

The number of square arc seconds subtended by a pixel is given by:

a - (0.001 1 s) 2

where I is the pixel length in microns, and s is the plate scale in "/mm. For

values of I = 20 microns/pixel and s = I00 "/mm, a is 4 sq. arc seconds/pixel.

Star image sizes were determined from the formula of Liller and Liller (1975)

pertinent to Palomar 1.2m Schmidt plates. In all cases, air masses were simply

equated to sec z. All input data are therefore well within range of normal

expectation.
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§9.2. Tests of the Algorithm.

Since the primary extinction coefficient is far and away the most

important one, the primary goal is to see whether there is a reasonable expect-

ation of its derivation. Wedescribe here the results of tests which are the

simplest conceivable, yet which are still definitive; vlz. tests of the case

where (1) the tertiary extinction coefficient is ignored, (ii) the secondary

color coefficient is assumedknown, and (iil) only the primary coefficient and

one or two Baker-Sampsonpolynomial coefficients are regarded as unknowns.

Thus the inclusion of the secondary color coefficient and stellar color indices

(CI) in Tables 9-2 and 9-3 are for present purposes to be regarded as non-

participatory factors insofar as the present tests are concerned, even though

their values were used to evaluate participatory coefficients [e.g. the l.h.s.

of equation (7.2.2)].

Whenthere is only one polynomial coefficient C, the problem (7.2.2)

becomesinherently linear in log C and the extinction coefficients, and is thus

more amenable to direct analytic treatment (§9.4). For the sake of simplicity,

we describe the parallel numerical implementation of Newton's method as if this

were the case.

A program in GWBASICwas written to implement the theory of §7.2.

Equations (7.2.3a,b) and (7.2.5) were programmedto evaluate the 2 x 9 matrix A
r

of equation (7.2.6), whose 2 columns are necessitated by the 2 unknown correc-

tions to k I and the polynomial coefficient C in matrix X, and whose 9 rows

correspond to the 9 standard stars. Similarly, the 9 rows of matrix Y of

equation (7.2.6) are evaluated at each iteration for each of the 9 standards.

Evaluation of the matrix (ATA)-IA T proceeds by the usual means (e.g. Natrella

1963; but note that matrix elements there are opposite to the conventional RC

- or Row/Column - notation!); this matrix will be merely 2 x 2 if there are
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only 2 unknown coefficient corrections X. In double-preclslon, the solution of

equation (7.2.6) can be found by implementing Cramer's Rule without fear of

ill-conditioning; our results show that Cramer's Rule works for 2 or 3 un-

knowns. In the case of more unknowns, more sophisticated methods are necessary

(e.g. Branham 1988).

To demonstrate the numerical accuracy and correctness of the program,

we have evaluated the magnitudes m i appearing in the terms of matrix Y [i.e.

the r.h.s, of equation (7.2.5), i = 1,2,...,9] such that each term is zero.

This ensures that the the optimization parameter p, and the coefficients k I

and C, used in the calculation, should be the ones that obtain after imple-

mentation of the iteration algorithm. Double precision is used throughout,

with results given in Table 9-2. When the iteration algorithm is then run to

convergence, the results shown In Figures 9-1 and 9-2, and in Table 9-3, are

found; the input data are recovered, so the program works correctly and with

sufficient accuracy (at least 5 significant figures). Moreover, the test shows

that the range in z is sufficient to ensure that the determinant A is well-

conditioned.

For the test data used here, and for p in the range of about ±0.05 about

the correct value, improvement in the coefficients is found at a rate of an

order of magnitude or more per iteration. Farther from the correct value of p,

convergence is slower as expected, and is marked by two requirements: (i) the

guessed value must be closer to the correct one for convergence to occur, and

(il) it is necessary to settle for fewer significant figures before divergence

sets in. Ultimately, the requirement (i) above becomes absurdly stringent, and

for all practical purposes the trial solutions diverge. This quantifiable be-

haviour is canonical, and is programmable in the general case.

Owing to the linear properties of the perturbed system, kI converges
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at a rate that keeps pace wlth the polynomlal coefflclent C, and thls means

that it must be derived formally to an accuracy unwarrented by the observations

if C is to be accurate to, say, 4 significant figures. It is to be expected

that a similar condition obtains in the general case, and in fact it might be

quite satisfactory simply to regard k2 (and perhaps k3) as given. This should

substantially improve the convergence properties of the algorithm in the

general case by allowing every bit of informatlon from the standards to

contribute where their need is greatest, vlz. in the determination of kI and

the polynomial coefficients.
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§9.3. Magnitude Errors

Standard star magnitudes will cutomarily be in error, and these may be

systematic or random. The effects of randomerror in a given number of stand-

ards will be to reduce the ability of the algorithm to converge; this can be

surmised by carrying the argument to the extreme, when input magnitudes in

equation (7.2.5) are so poor that the polynomial differences there are in-

capable of reproducing them. Randomerror is meliorated by increasing the

number of standards, but the errors must continue to be randomly distributed in

zenith distance as well if kI is to be accurately determined.

Table 9-3 contains solutions for two worst cases in the case of 9

standard stars: viz., when the sameabsolute error of 0.03 mag is systematic-

ally distributed in z, such that (i) all mi are too large (i.e. too faint) at

the smaller z, and too small (i.e. too bright) at the larger z; and (ii) vice

versa. In the test case here (Tables g-l, 9-2) the set at smaller z contains 4

stars, and the set at larger z has 5 stars, so that the median of the random

errors is as close to zero as needed for this illustration.

The convergence properties in these two cases are shown in Figure 9-2.

The upper and lower curves are the envelopes which contain all other solutions

resulting from any other z-distrlbution of error (provided the absolute error

is still 0.03 magand the choices of z are as stated). In other test cases not

reported here, convergence is slowed by larger magnitude errors, as expected,

until finally for large enough errors there is a failure to converge. The num-

erical results confirm that the algorithm is able to handle situations where,

owing to observational error or differences in system response, the standard

star magnitudes and the observed densities are not always precisely compatible.

The results of Table 9-3 show that whenmagnitude errors are always

positive at the lower z and negative at the higher z, the derived extinction
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coefficient is greater than it would be if there were no errors (and vice

versa). This may be difficult to see at first glance, but a convincing argu-

ment proceeds as follows. If magnitudes at the lower z are perceived as pre-

ferentlally too faint, i.e. the magnitude errors are positive, then the ex-

tinction coefficient would have to be greater to compensatefor this. On the

other hand, the negative magnitude errors which cause the perceived magnitudes

at the higher z to be too bright, do not require a lower extinction coefficient

as might be expected, because the air mass is larger there, sufficiently large

in fact that the negative magnitude error is accounted for (and vice versa).

This result is seen also with the help of an analytic treatment.
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§9.4 Analytlc Solutions

Reduce the system (7.2.2) to its essentials for two unknowns, k and C:

(9.4.1) m i + kM i + 2.5 log C = Ri, (i = 1,2,...,1)

where R i (i - 1,2,...,I) is an abbreviated notation for the polynomial differ-

ences in equation (7.2.2), and are assumed known. M = sec z is the air mass.

Suppose that equation (9.1.1) is exactly satisfied for all i, i.e. that magni-

tudes exist in theory which precisely satisfy the system. These "true" magni-

tudes will presumably differ slightly from the standard star input magnitudes.

Suppose that these small differences are the same in absolute value for all i,

but are systematically incurred such that:

mi(new ) = m i + dm, (i = 1,2,...,Ii, M = MI)(9.4.2a)

and

(9.4.2b) mi(new ) = m i - dm, (i = II+I,II+2,...,I, M = M2).

The errors will engender small departures from the "true" coefficients k and C,

such that:

(9.4.3)

and:

(9.4.4)

k(new) = k + dk,

logC(new) = logC + dlogC,

will be the new solution. The r.h.s, of equation (9.4.1) will not change of

Equations (9.4.1) to (9.4.4) give:

m i + dm + Ml(k+dk) + 2.5(logC+dlogC) = Ri, (i = 1,2,...,11),

course.

(9.4.5a)

and"

(9.4.5b) m i - dm + M2(k+dk) + 2.5(logC+dlogC) = Ri, (i - ll+l,...,I).

When there are no magnitude errors, equation (9.4.1) holds, so that:

(9.4.6a)

and:

(9.4.6b)

dm + Mldk + 2.5 dlogC = O, (i = 1,2,...,Ii),

-dm + M2dk + 2.5 dlogC = O, (i - Ii+i,...,I).
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and:

(9.4.8)
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Since each system of equations is now independent of i, any one equation from

each set suffices to determine dk and dlogC. Thus:

dk - + 2dm/(M2-Ml) ,

2.5 dlogC - - dm(M2+M1)/(M2-M1).

It is easily shown that these expressions account precisely for the results in

Table 9-3 that have been obtained by numerical implementation of Newton's

method.

Equations (9.4.6a,b) reveal another interesting fact that might not be

readily apparent. If the signs preceding dm in each equation were to be the

same, then dk = O, but dlogC = ±0.4dm. In other words, if there is a truly

systematic error between the standards and the measured responses, regardless

of placement in z, then k should still be correctly determined, because k is

determined differentially. The systematic error is faithfully transmitted to

the photometric expansion coefficient instead. In practice errors will always

exist, but if these are normally distributed in z, accurate values for

extinction should be derivable to first order, provided that there are enough

standards distributed over a sufficient range of z, and provided that the

detector is well-behaved for trailed standards. A synopsis of these results

has been presented elsewhere (Usher 1989).



Table 9-1

Summaryof Input Densities

Zenith
Distance

60@

60°

66°

66°

Object

sky
star #I
star #2
star #3
star #4

sky
star #5

star #6

star #7

star #8

star #9

fog

Min.Pix.

Density

0.4

0.4

0.4

0.4

0.4

0.5

0.5

0.5

0.5

0.5

0.5

0.2

Max.Pix.

Density

0.7

1.0

2.0

2.8

1.5

0.8

2.3

3.2

1.3

1.8

2.7

0.3

Mean Pix.

Density

0.550

0.574

0.651

0.763

0.606

0.650

0.749

0.905

0.668

0.697

0.812

0.240

0.070

0.Iii

0.282

0.471

0.171

0.070

0.294

0.578

0.108

0.169

0.375

0.049



Table 9-2

Exact Solution Parameters

p = _; kI = 3/10; (k 2 = 0.03); C = 2x10 "_

Star # mag Cl z

17.63254..

15.93716..

15.01066..

16.67302..

15.71947..

14.59827..

17.81131..

16.64795..

15.19134..

0.5

1.0

0.9

0.7

1.3

-0.2

-0. I

1.0

0.8

60 °

60 °

60 °

60 °

66 °

66 °

66 °

66 °

66 °



Table 9-3

Summary of Converged Solutions (k2 - 0.03, k 3 = O)

magnitude errors

+I-0.03 (z=60:66 °)

0 (exact)

-1+0.03 (z=60_66 =)

P

0.25

0.25

k I

0.4308

3/lO

0.1692

CxlO 8

1.5288

2

2.6164

msky(60°)

22.22

21.93

21.64

msky(66°)

21.93

21.64

21.35

mfog

21.13

20.84

20.55
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X. STANDARD STARS FOR THE P/HALLEY APPARITION

§i0.i The Search Area.

The Large-Scale Phenomena Network (LSPN) of the International Halley-

Watch has provided large numbers of wlde-angle images of P/Halley taken with a

variety of cameras located at sites across the world. For the most part, these

photographs were taken with instruments that were not equipped with tube spots

or calibration wedges, so that calibration must be effected through the use of

field stars of known magnitudes and colors. A list of stars of known identifi-

cation, position, magnitude, and color, has been compiled for this purpose; the

entries comprise the Special Halley-watch Identification and Photometric Star

Catalog (hereafter, the SHIPSCat) and have been given in a separate report to

the LSPN (Dorband and Usher 1985; hereafter, Report II).

In selecting the boundaries of the search area, it was necessary to

account for four mutually dependent effects: (i), the angular extent and

orientation of the tail; (li), the sizes of the fields of the network tele-

scopes; (ill), the incidence of calibration standards of the requisite accu-

racy; and (iv), the centers and orientations of the fields of view of the tele-

scopes along the projected path of the comet. Details of these calculations

are given in a separate report to the LSPN (Dorband et al. 1985; hereafter,

Report I). Since it was necessary to compile Report I before the event, it was

necessary to predict the behaviour of the comet in order to map the avail-

ability of standard stars along its path. The geometrical aspect and temporal

evolution of the plasma tall was predicted semi-emplrlcally by Niedner (1984)

with the help of data from the 1910 apparition. Data on particlpatlng tele-

scopes enabled the concept of "average telescope" to be quantified, by which it

was surmised that an average fleld-of-view (FOV) might be comfortably taken to

be 50-100 square degrees. As a result, criteria were established with due
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consideration for items (i)-(iv) above in order to define the search area.

These are discussed in Report I. The final search area is shown in Figure I0-I

and given in greater detail in Report I.
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§10.2 Properties of the SHIPSCat.

The question arises as to the incidence of photometric standards that

are needed to calibrate a plate to the required accuracy. There is a clear

choice: stars with known photographic magnitudes, or stars with known photo-

photoelectric magnitudes. The number of photographic standards available per

unit surface area of the sky can be estimated from the SAO Star Catalog.

Photographic magnitudes are listed for 131,080 stars. These magnitudes lie

mainly between 7 and 12. [More than twice as many - almost the full SAO

catalog - have visual magnitudes.] The average surface density of photo-

photographic magnitudes is thus Just over 3 per square degree, providing 300

standards over the i0 degree square FOV of the optimal telescope. The accuracy

of these potential standards is unlikely to be better than 0.I magnitudes, and

their usefulness in the implementation of the standard star theory may well be

problematical.

On the other hand, the Catalogue of Stellar Identifications (CSI;

Ochsenbein 1978; Wenger and Ochsenbein 1984) lists about 6300 objects with U,

B, or V, magnitudes over the Halley path (13% of the sky), for an average

surface density of about 1.2 per sq. deg. Magnitudes in other systems

are far fewer; Geneva photometry amounts to 10% of this value, and is statis-

tically insignificant in the quest for calibration. Stromgren narrow-band mag-

nitudes are the nearest competitor, but the (b-y), ml, cl, and H-beta indices

are still only 30% of the broadband magnitudes. Inasmuch as the photographic

emulsions likely to be used to record the wide-field phenomena are more similar

to the broadband Johnson filters, we confined the search to U,B, and V.

The number of B standards available on a I0 degree square plate is thus

about i00, mainly between magnitudes 5 and 13. Considerable numbers of these
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may be lost to saturation without hindering a photometric history of P/Halley.

Difficulties in calibration might be encountered only for FsOV of small

solid angle, but these are likely to be of less interest to the LSPN. Special

cases (such as imagery at high z) may require that the number of standards be

supplemented. This can be accomplished either by generating them ab Initlo, or

by generating secondary standards from primary ones. In the first case, high

photometric accuracy may be achieved relatively quickly on telescopes of modest

aperture with CCD photometry. In the second case, secondary standards with an

accuracy of 0.05 mag or better can be generated by the methods outlined.

A minimum of I0 accurate calibrators in an average FOV are necessary

to achieve the necessary photometric solution for the large-scale phenomena of

interest. Barring setbacks unforeseen by the research effort reported here,

the prospects seem excellent for a quantified photometric and morphological

history of the latest apparition of P/Halley.
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